Supporting Information

The Microbiome of Size-Fractionated Airborne Particles from the Sahara Region

Rebecca A. Stern^a, Nagissa Mahmoudi^b, Caroline O. Buckee^c, Amina T. Schartup^{d,e}, Petros

Koutrakis^d, Stephen T. Ferguson^d, Jack Mikhail Wolfson^d, Steven C. Wofsy^f, Bruce C. Daube^f,

Elsie M. Sunderland^{a,d}

^aHarvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA 02138

^bDepartment of Earth and Planetary Sciences, McGill University, Montreal, QC, H3A 0E8

^cCenter for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115

^dDepartment of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115

eScripps Institution of Oceanography, La Jolla, CA 92037

^fDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138

Number of pages: 16

Number of figures: 4

Number of tables: 5

Table of Contents

Table S1. Average meteorological conditions	S3
Table S2. Samples tested for species with known pathogenic strains using PCR	S4
Table S3. Primer set sequences for PCR of potential pathogens	S5
Figure S1. Rarefaction curves of operational taxonomic units (OTUs)	
Table S4. Taxonomic assignment for OTUs that differed significantly across sizes	S7
Additional Text: Difference in bacterial diversity across particle sizes	S8
Figure S2. Community analysis using PCoA	
Table S6. Taxa with features for survival in harsh atmospheric conditions	.S10
Figure S3. Wind direction, wind speed, and HYSPLIT trajectories for sampling day 1	.S11
Figure S4. Wind rose plots of instantaneous wind direction and velocity	.S12

Table S1. Average meteorological conditions on sampling days at the collection site in Bamako,Mali (Latitude 12.332 N, Longitude -7.578 W, 389 m above sea level).

Date	Sampling Day	Wind speed (m/s)	Relative humidity (%)	Majority wind direction ^a	Air temperature (°C)	Barometric pressure (mm Hg)
Feb. 11, 2018	1	1.51	6.1	NNE	30.3	29.87
Feb. 13, 2018	2	1.23	6.5	NNE	33.5	29.86
Feb. 14, 2018	3	0.99	4.8	NE	35.1	29.84
Feb. 15, 2018	4	1.41	2.6	NNE	36.0	29.87
Feb. 16, 2018	5	1.41	2.0	ENE	37.1	29.89
Feb. 17, 2018	6	1.26	4.2	NNE	37.3	29.83
Feb. 18, 2018	7	1.25	4.0	NNE	39.1	29.78
Feb. 19, 2018	8	1.14	10.3	NE	38.2	29.75
Feb. 20, 2018	9	1.58	9.4	NNE	33.0	29.79

^a Wind direction is expressed as majority wind direction, calculated by categorizing the instantaneous wind velocity into cardinal wind directions and taking the majority from each sampling day.

	Sample	Particle	
Pathogen target	Tested	Size (µm)	+/-
	D2.C.F	< 0.5	+
Bacillus cereus	D3.C.F	<0.5	+
	D7.C.P1	2.5-1.0	-
	D3.C.F	< 0.5	+
Escherichia coli	D3.C.P1	2.5-1.0	-
	D9.C.P0.5	1.0-0.5	+
	D6.C.P1	2.5-1.0	+
Fuschactorium nucleatum	D3.C.P0.5	1.0-0.5	-
Fusodacierium nucleatum	D9.C.F	<0.5	-
	D4.C.P2.5	10.0-2.5	+
Streptococcus pneumoniae	D3.C.P0.5	1.0-0.5	-
	D9.C.P2.5	10.0-2.5	-
Stanhylococcus anidarmidis	D8.C.P1	2.5-1.0	-
Staphytococcus epidermiais	D5.C.P0.5	1.0-0.5	-
	D4.C.P1	2.5-1.0	-
Pseudomonas aeruginosa	D3.C.P2.5	10.0-2.5	+

Table S2. Samples tested for species with known pathogenic strains using PCR.

Species	Primer sequence
Escherichia coli	EcoliuidA_FPrimer: CGGAAGCAACGCGTAAACTC EcoliuidA_RPrimer: TGAGCGTCGCAGAACATTACA EcoliuidA_Probe: /56-FAM/CGCGTCCGATCACCTGCGTC/3BHQ_1/
Pseudomonas aeruginosa	pseuF: ACTTTAAGTTGGGAGGAAGGG pseuR: ACACAGGAAATTCCACCACCC pseuProbe: Fam-ACAGAATAAGCACCGGCTAAC-BHQ
Streptococcus pneumoniae	Sp-lytAF: ACG CAA TCT AGC AGA TGA AGC A Sp-lytAR: TCG TGC GTT TTA ATT CCA GCT Sp-lytAP: /56-FAM/CCGAAAACGCTTGATACAGGGAG/3BHQ_1/
Staphylococcus epidermidis	StaphepiF: ACTGGTTACCCTGGTGACAAACCA StaphEpiR: ACTGGAGATCCAGAGTTTCCACCT staphepiProbe: /56-FAM/AGCCACAATGTGGGAAAGTGTAGGT/3BHQ_1/
Bacillus cereus	bacCereusF: CTGTAGCGAATCGTACGTATC bacCereusR: TACTGCTCCAGCCACATTAC bacCereusP: /56-FAM/GGAGCTGTACAACTTGCCA/3BHQ_1/
Fusobacterium nucleatum	FnucleatF-R-P: proprietary

 Table S3. Primer set sequences for PCR of potential pathogens.

Figure S1. Rarefaction curves of operational taxonomic units (OTUs) clustered at 99% sequence identity across all samples.

Table S4. Taxonomic assignment for OTUs that differed significantly across the various particle sizes and the particle size fraction with greatest abundance.

Taxonomic Assignment	Particle size preference (µm)
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Geodermatophilaceae; g_Geodermatophilus; s_obscurus	>10.0
p_Firmicutes; c_Bacilli; o_Lactobacillales; f_Aerococcaceae; g_; s_	10.0-2.5
p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_; s_	>10.0
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Intrasporangiaceae	10.0-2.5
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Intrasporangiaceae	10.0-2.5
p_Firmicutes; c_Clostridia; o_Clostridiales; f_Ruminococcaceae; g_; s_	>10.0
p_Firmicutes; c_Bacilli; o_Bacillales; f_Planococcaceae	2.5-1.0
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; g_Corynebacterium; s_	2.5-1.0
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Geodermatophilaceae; g_Geodermatophilus; s_obscurus	>10.0
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Nocardioidaceae; g_; s_	10.0-2.5
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales; f_Corynebacteriaceae; g_Corynebacterium; s_	2.5-1.0
p_Proteobacteria; c_Alphaproteobacteria; o_Rhizobiales; f_Bradyrhizobiaceae; g_Balneimonas; s_	10.0-2.5
p_Proteobacteria; c_Gammaproteobacteria; o_Pseudomonadales; f_Moraxellaceae; g_Psychrobacter; s_pulmonis	>10.0
p_Actinobacteria; c_Actinobacteria; o_Actinomycetales	>10.0

Additional Text: Difference in bacterial diversity across particle sizes

Additional details on genera detected and corresponding potential sources are presented in Additional Text Table 1. At the genus level, *Geodermatophilus*, a soil-associated genus, was more abundant in the largest (>10 μ m) size fraction (Kruskal-Wallis test, FDR *p*<0.05). Prior work found strains of *Geodermatophilus* in 1-2 mm sand from the Saharan desert,¹ consistent with detection in this study preferentially on the largest particle sizes. The *Ruminococcaceae* family exhibited a preference for the largest particle size fraction (Kruskal-Wallis, FDR *p*<0.05). This family was previously identified as an indicator for bovine fecal contamination.² The family *Dermatophilaceae*, which are common on animal and human skin, were most abundant in the largest two size fractions. Our sampling location was 11 km downwind of a cattle market, which could be a source of large, locally generated particles with distinct microbial composition.

One taxonomic class (Thermomicrobia) out of the 62 classes detected statistically differed among the five atmospheric particle sizes (Kruskal-Wallis test, FDR p<0.05), with greatest abundance in the particle size range of 10.0-2.5 µm. This class has been found in a wide range of soil types, typically isolated from human activity.³ Thermomicrobia were previously found in the desert soil of the Sahara⁴, indicating the potential for local sources with larger particles that did not yet fall out due to gravitational settling.

Soil	Skin	Stool	Compost	Wastewater Treatment	Land Application Biosolids
Bradyrhizobium	Propionbacterium	Bacteroides	Saccharopolyspora	Arcobacter	Clostridium
Mesorhizobium	Staphylococcus	Faecalibacterium			
	Corynebacterium	Oscillospira			
	Streptococcus	Roseburia			
	Rothia	Coprococcus			
	Micrococcus	Ruminococcus			
	Anaerococcus	Parabacteroides			
	Brevibacterium	Phascolarctobacterium			
		Sutterella			
		Blautia			

Additional Text Table 1. Genera detected in the samples and corresponding potential sources.

Figure S2. Community analysis using pairwise, weighted UniFrac distances visualized on a principal coordinates analysis (PCoA) plot with the percent of variation explained by each axis noted in brackets. Samples were grouped by sampling day.

 Table S6. Taxa detected with features for survival in harsh atmospheric conditions.

Taxa detected in the samples	Relevant trait
Burkholderiales, Pseudomonadales, Flavobacteriales	Common in outdoor air ⁵
Bacillaceae	Forms endospores
Gemmatimonadetes, Thermus, Chloroflexi, <i>Psychrobacter</i> , Myxococcales	Commonly found in extreme environments
Gemmatomonadetes, Deinococcus	Associated with hyper-arid environments; bioindicators for Saharan dust events ^{6–8}
Gemmatomonadetes	UV protection during aerial transport due to carotenoid pigmentation ^{9,10}
Methylobacterium, Rubrobacter	Possess structures to resist environmental stresses ^{6,11}
Arthrobacter, Methylobacterium	Dessication-resistant ⁶
Bacillus, Kocuria, Micrococcus	Detected in culture-based air samples in Mali ¹²
Bacteroidetes	Preference for desert soils
Cytophagaceae (Hymenobacter), Flavobacteriaceae	Pigmented and psychrotolerant; previously found in Saharan dust ¹³
Nocardioides, Sporichthya, Beijerinckiaceae, Hyphomicrobiaceae, Acetobacteraceae, Skermanella, Rhodocyclaceae, Rhodospirillaceae, Sphingomonadaceae	Motile spores
Mesorhizobium	Motile by symbiosis with plant roots
Patulibacter, Rhodobacteraceae, Modestobacter	Psychrotolerance aids survival in Sahara at night ⁶
Rubrobacteraceae, Streptosporangiaceae, Pseudonocardia, Rubellimicrobium, Streptomyces	Heat tolerant and thermophilic ^{6,14}
Rubrobacter, Hymenobacter, Methylobacterium	Gamma radiation-resistant ^{6,14}
Bacillus, Paenibacillus, Arthrobacter, Cellulomonas, Janthinobacterium, Modestobacter, Pseudomonas, Sphingomonas	UV resistant ¹⁵
Nocardioides	Halophilic
Bacillaceae, Paenibacillaceae, Bacillus	Spore-forming
Geodermatophilaceae, Pseudonocardiaceae, Rhodocyclaceae, Rubrobacteraceae	oligotrophic
Frankia, Beijerinckiaceae, Bradyrhizobiaceae, Rhizobium, Rhizobiaceae, Mesorhizobium, Azospirillum, Rhodospirillaceae, Frankia, Oxalobacteraceae	Nitrogen-fixing
Methylobacterium	convert nitrogen gas to ammonia and feed on methanol
Hyphomicrobiaceae	phototrophic
Rhodobacteraceae, Rhodocyclaceae, Rhodospirillaceae, Sphingomonas (aerobic)	Photoheterotrophic
Cellulosimicrobium, Actinobacteria	biodegrade cellulose or lignin
Cytophagaceae	Capable of degrading plant material
Clostridiaceae, Fusobacteriaceae, Lactobacillaceae, Oxalobacteraceae, Rhodospirillaceae	Strict anaerobes
Enterobacteriaceae, Myxococcaceae, Rhodospirillaceae	Facultative anaerobes
Methanobacteriales	thermophilic anaerobic methanogens

Figure S3. (a) Wind direction and wind speed for sampling day 1 (Feb. 11, 2018); (b) HYSPLIT 72-hour backward trajectories from the sampling site for sampling day 1; HYSPLIT 72-hour forward trajectories from the sampling site for sampling day 1. All other sampling days exhibited wind patterns and trajectories similar to sampling day 1 (Figure S4).

Figure S4. Wind rose plots of instantaneous wind direction and velocity (m s⁻¹) during each of the sampling days reveal the winds were predominantly from the northeast.

References

- del Carmen Montero-Calasanz, M.; Göker, M.; Pötter, G.; Rohde, M.; Spröer, C.; Schumann, P.; Klenk, H. P. Geodermatophilus Africanus Sp. Nov., a Halotolerant Actinomycete Isolated from Saharan Desert Sand. *Antonie Van Leeuwenhoek* 2013, *104* (2), 207–216.
- Bowers, R. M.; Clements, N.; Emerson, J. B.; Wiedinmyer, C.; Hannigan, M. P.; Fierer, N. Seasonal Variability in Bacterial and Fungal Diversity of the Near-Surface Atmosphere. *Environ. Sci. Technol.* 2013, *47* (21), 12097–12106. https://doi.org/10.1021/es402970s.
- Houghton, K.; Morgan, X.; Lagutin, K.; MacKenzie, A.; Vyssotskii, M.; Mitchell, K.;
 McDonald, I.; Morgan, H.; Power, J.; Moreau, J.; Hanssen, E.; Stott, M. Thermorudis
 Pharmacophila Sp. Nov., a Novel Member of the Class Thermomicrobia Isolated from
 Geothermal Soil, and Emended Descriptions of Thermomicrobium Roseum,
 Thermomicrobium Carboxidum, Thermorudis Peleae and Sphaerobacter Thermophil. *Int. J. Syst. Evol. Microbiol.* 2015, *65* (12), 4479–87.
- (4) A. Belov, A.; S. Cheptsov, V.; A. Vorobyova, E. Soil Bacterial Communities of Sahara and Gibson Deserts: Physiological and Taxonomical Characteristics. *AIMS Microbiol.* **2018**, *4* (4), 685–710. https://doi.org/10.3934/microbiol.2018.4.685.
- (5) Prussin, A. J.; Marr, L. C. Sources of Airborne Microorganisms in the Built Environment. *Microbiome* 2015, *3*, 78. https://doi.org/10.1186/s40168-015-0144-z.
- (6) Favet, J.; Lapanje, A.; Giongo, A.; Kennedy, S.; Aung, Y. Y.; Cattaneo, A.; Davis-Richardson, A. G.; Brown, C. T.; Kort, R.; Brumsack, H. J.; Schnetger, B.; Chappell, A.; Kroijenga, J.; Beck, A.; Schwibbert, K.; Mohamed, A. H.; Kirchner, T.; De Quadros, P.

D.; Triplett, E. W.; Broughton, W. J.; Gorbushina, A. A. Microbial Hitchhikers on Intercontinental Dust: Catching a Lift in Chad. *ISME J.* **2013**, *7* (4), 850–867. https://doi.org/10.1038/ismej.2012.152.

- Meola, M.; Lazzaro, A.; Zeyer, J. Bacterial Composition and Survival on Sahara Dust Particles Transported to the European Alps. *Front. Microbiol.* 2015, *6* (DEC), 1–17. https://doi.org/10.3389/fmicb.2015.01454.
- (8) Chuvochina, M. S.; Alekhina, I. A.; Normand, P.; Petit, J. R.; Bulat, S. A. Three Events of Saharan Dust Deposition on the Mont Blanc Glacier Associated with Different Snow-Colonizing Bacterial Phylotypes. *Microbiology* 2011, *80*, 125–131.
- (9) Tong, Y. Y.; Lighthart, B. Solar Radiation Is Shown to Select for Pigmented Bacteria in the Ambient Outdoor Atmosphere. *Photochem. Photobiol.* **1997**, *65*, 103–106.
- Hanada, S.; Sekiguchi, Y. The Phylum Gemmatimonadetes. In *The Prokaryotes*;
 Rosenberg, E., Delong, E., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Berlin, 2014;
 pp 677–681.
- (11) Griffin, D. W. Atmospheric Movement of Microorganisms in Clouds of Desert Dust and Implications for Human Health. *Clin. Microbiol. Rev.* 2007, *20* (3), 459–477. https://doi.org/10.1128/CMR.00039-06.
- Kellogg, C. A.; Griffin, D. W.; Garrison, V. H.; Peak, K. K.; Royall, N.; Smith, R. R.;
 Shinn, E. A. Characterization of Aerosolized Bacteria and Fungi from Desert Dust Events in Mali, West Africa. *Aerobiologia (Bologna)*. 2004, 20 (2), 99–110. https://doi.org/10.1023/B:AERO.0000032947.88335.bb.
- (13) Fierer, N.; Leff, J. W.; Adams, B. J.; Nielsen, U. N.; Bates, S. T.; Lauber, C. L. Cross-Biome Metagenomic Analyses of Soil Microbial Communities and Their Functional

Attributes. Proc. Natl. Acad. Sci. 2012, 109, 21390-21395.

- (14) Giongo, A.; Favet, J.; Lapanje, A.; Gano, K. A.; Kennedy, S.; Davis-Richardson, A. G.;
 Brown, C.; Beck, A.; Farmerie, W. G.; Cattaneo, A.; Crabb, D. B.; Aung, Y. Y.; Kort, R.;
 Brumsack, H. J.; Schnetger, B.; Broughton, W. J.; Gorbushina, A. A.; Triplett, E. W.
 Microbial Hitchhikers on Intercontinental Dust: High-Throughput Sequencing to
 Catalogue Microbes in Small Sand Samples. *Aerobiologia (Bologna)*. 2013, 29 (1), 71–84.
 https://doi.org/10.1007/s10453-012-9264-0.
- (15) Toepfer, I.; Favet, J.; Schulte, A.; Schmölling, M.; Butte, W.; Triplett, E. W.; Broughton,
 W. J.; Gorbushina, A. A. Pathogens as Potential Hitchhikers on Intercontinental Dust. *Aerobiologia (Bologna).* 2012, 28 (2), 221–231. https://doi.org/10.1007/s10453-011-9230-

2.