@AGUPUBLICATIONS

Global Biogeochemical Cycles

Supporting Information for:

A global 3-D ocean model for polychlorinated biphenyls (PCBs): Benchmark compounds for understanding the impacts of global change on neutral persistent organic pollutants

Charlotte C. Wagner, *, † Helen M. Amos, ‡ Colin P. Thackray, † Yanxu Zhang, †

Elizabeth W. Lundgren,[†] *Gael Forget*,[§] *Carey L. Friedman*, $^{\perp I}$ *Noelle E. Selin*, $^{\perp}$

Rainer Lohmann[#] and Elsie M. Sunderland^{\dagger, \ddagger}

[†]Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, United States

[‡] Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston,

Massachusetts 02215, United States

§ Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

Corning School of Ocean Studies, Maine Maritime Academy, Castine, Maine, 04420, USA

¹ Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, USA

[#]Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

02882, United States

**Corresponding author:* Phone: +1-617-496-5745. E-mail: cwagner@g.harvard.edu. Mail: Harvard University, 125 Pierce Hall, 29 Oxford Street, Cambridge, Massachusetts 02138, United States

Contents of this file

Table S1. Air-sea exchange parameterization	. 3
Table S2. Physicochemical properties of PCBs	. 5
Table S3. Modeled and measured dissolved seawater concentrations	. 6
Figure S1. Modeled vertical profiles from five sensitivity simulations	. 8
Figure S2. Measured PCB depth profiles of	. 9
Figure S3. Changes in PCB residence times in the upper 1000 m between 1970-2015 1	10
Figure S4. Changes in CB-101 and CB-180 mass distribution between 1930-2015 1	11
Table S4. Modeled best estimate for 2015 PCB reservoir	12

Introduction

The Supporting Information contains four tables and four figures.

Variable (Units)	Description	Equation	Reference
$F \pmod{\mathrm{m}^{-2} \mathrm{sec}^{-1}}$	flux of gas across	$F = K_w(C_a/K_H - C_w)$	1
	the air-sea interface		
$C_a \pmod{\mathrm{m}^{-3}}$	Air concentration	GEOS-Chem atmospheric simulation	2
C_w (mol m ⁻³)	Water	MITgcm ocean simulation	This work
	concentration		
Кн	dimensionless gas-	$K_H = C_a / C_w$	
	over-liquid Henry's		
	law constant		
	Temperature	$K_H = K_{H0} * \exp(-\Delta H/R * (1/T - 1/T_0))$	3
	dependence of K_H		
T_{θ} (Kelvin)	Standard	25 °C = 298.15 K	
	temperature		
T (Kelvin)	Temperature of	MITgcm ocean simulation	This work
	seawater		
K _{H0}	Dimensionless gas-	See Table S2	
	over-liquid Henry's		
	law constant at		
	standard		
	temperature and		
	pressure (1 atm)	a m 11 aa	
ΔH (J mol ⁻¹)	Enthalpy of	See Table S2	
	solution	0.214	
R (J K ⁻¹ mol ⁻¹)	Universal gas	8.314	
V (constant Tatal material	$V = (1 - f) * [1/l + 1/(l - V)]^{-1}$	1
\mathbf{A}_{W} (m sec ⁻¹)	transfor yele site	$\mathbf{K}_{W} = (1 - f_{ice})^{*} [1/\mathbf{K}_{W} + 1/(\mathbf{K}_{a} \mathbf{K}_{H})]^{*}$	4
$k (m \text{ so} a^{-1})$	Single phase air	1.	5
<i>k_a</i> (III sec)	single-phase all-	$\kappa_a = 1 \times 10^{-3}$	5
	velocity	$= 1 \times 10^{-1}$	
	velocity	$+$ $\frac{\ln(S_{\perp})}{\ln(S_{\perp})}$	
		$13.3S_{c,a}^{0.5} + C_D^{-0.5} - 5 + \frac{m(0,c,a)}{2\kappa}$	
k_w (cm h ⁻¹)	Single-phase water-	$k_w = (0.222u_{10}^2 + 0.333u_{10})^* (S_{c,w} / $	6
	side transfer	$S_{c,CO2})^{-0.5}$	
	velocity		
fice (0 to 1)	Grid box sea ice	MITgcm ocean simulation	This work
	fraction		
$S_{c,CO2}$	Schmidt number of	600	4
	CO_2 at 20 °C in		
	treshwater		
$S_{c,w}$	Schmidt number for	$S_{c,w} = \mu_w / D_w = \eta_w / (\rho_w D_w)$	4
	the PCB of interest		
μ_w (units)	Kinematic viscosity		
	of water		

Table S1. Air-sea exchange parameterization.

D_w (in cm ² sec ⁻¹)	Diffusivity of the	$p = 7.4 \times 10^{-8} T \sqrt{\Phi M_s}$	7
	gas-phase PCB in	$D_w = \frac{\eta_s V_b^{0.6}}{\eta_s V_b^{0.6}}$	
(lram 1 a 1)	Dynamia vigoagity	~	0
η_{w} (kg m-1 s-1)	of water	η_w t ± 246	0
	01 water	$=\frac{t+240}{0.0550.4t^2+5.2042t+127.27}$ 1	
		$0.05594t^2 + 5.2842t + 137.37$ × 10 ⁻³	
$a_{\rm m}$ (kg m ⁻³)	Density of sea	1.03	4
$p_{W}(\mathbf{Kg} \mathbf{m})$	water	1.05	т
t (°C)	Seawater	MITgcm ocean simulation	This work
.(())	temperature		
V_b (cm ³ mol ⁻¹)	Liquid molar	See Table S2	
	volume		
η_s (kg m ⁻¹ s ⁻¹)	Dynamic viscosity	1.219	9
	of seawater at 15°C		
Ms	Relative molecular	18.01 for water	7
	mass of the solvent		
Φ	Association factor	2.6 for water	7
	of the solvent		
<u>u</u> * (m s ⁻¹)	Description of ustar	$u_* = u_{10} sqrt(6.1 \cdot 10^{-4} + u_{10} 6.3 \cdot 10^{-5})$	5
<i>u</i> ₁₀ (m s ⁻¹)	10-meter wind	Provided by ERA Re-analysis data	
	speed		
CD	Drag coeffcient	$C_D = 6.1 \cdot 10^{-3} + 6.3 \cdot 10^{-5} u_{10}$	10
К	von Karman	0.4	4
	constant		
$S_{c,a}$	Schmidt number in	$S_{c,a} = \mu_a / D_a = \eta_a / (\rho_a D_a)$	4
	air		
μ_a (units)	Kinematic viscosity		
	of air	0.5	1.1
D_a (units)	Diffusion	$D = 0.001 T^{1.75} $	11
	coefficient in air	$P[V_a^{1/3} + V_b^{1/3}]^2$	
η_a (kg m ⁻³)	Dynamic viscosity	$\eta_a = S_{V0} + S_{V1}t + S_{V2}t^2 + S_{V3}t^3 + S_{V4}t^4$	12
	of water (air)		
ρ_a (kg m ⁻³)	Density of air	$\rho_a = S_{D0} + S_{D1}t + S_{D2}t^2 + S_{D3}t^3$	12
S _V and S _D	Constants	values	12
Р	Atmospheric	1 atm	
	pressure		
V_a (cm ³ mol ⁻¹)	Molar volume of air	20.1	13
M _r (units)	Description	$M_r = (M_a + M_b) / (M_a M_b)$	4
$\underline{M_a (g \text{ mol}^{-1})}$	Molar mass of air	28.97	
$M_b (g \text{ mol}^{-1})$	PCB molar mass	See Table S2	
(1) Lies and Slator	IIII/1/11 (7) Eriodman a	und Solin [70] 51. (3) Sandor [1000]. (1)	ahnson

(1) Liss and Slater [1974]; (2) Friedman and Selin [2015]; (3) Sander [1999]; (4) Johnson [2010]; (5) Duce et al. [1991]; (6) Nightingale et al. [2000]; (7) Wilke and Chang [1955]; (8) Laliberté [2007]; (9) ITTC [2006]; (10) Smith [1980] (11) Fuller et al. [1966]; (12) Tsilingiris [2008]; (13) Tucker and Nelken [1990].

	CB-28	CB-101	CB-153	CB-180	Reference
molar mass, M_b (g	257.54	326.43	360.88	395.32	1
mol ⁻¹)					
molar volume, V_b	169.14	193.62	205.86	218.1	2
$(cm^3 mol^{-1})$					
log K _{OW} (unitless)	5.92	6.76	7.31	7.66	3
$\log K_H$ (unitless)	-1.93	-2.08	-2.13	-2.51	3
$\log K_{OC}$ *(unitless)	6.99	7.79	8.32	8.65	3, 4
enthalpy of air-	51.8	65.2	68.2	69.0	3
water exchange,					
$\Delta H (\text{kJ mol}^{-1})$					
Degradation half-	5 500	31 000	55 000	55 000	5
life, $t_{1/2}$ (hours)					

Table S2. Physicochemical properties of PCBs.

(1) *Li et al.* [2003]; (2) *Schwarzenbach et al.* [2003]; (3) *Schenker et al.* [2005]; (4) *Sobek et al.* [2004]; (5) *Wania and Daly* [2002]

*Calculated using the relationship from *Sobek et al.* as follows: $logK_{oc} = (0.88 \pm 0.07)logK_{ow} + (0.90 \pm 0.47)$ [2004].

	Surface ocean			
	(<10 m)			
Ocean Basin	Observed	Modeled		
	median/ percentiles (pg/L)	median/ percentiles		
		(hg/r)		
CB-28				
Arctic Ocean	0.18 (0.03. 0.57) (n=41)	0.29 (0.16, 0.54)		
North Atlantic	0.41 (0.13, 2.33) (n=11)	0.09 (0.02, 0.18)		
South Atlantic	0.16 (0.06, 1.04) (n=14)	< 0.02		
Eq. and S. Pacific	0.76 (0.33, 2.45) (n=16)	< 0.01		
Southern Ocean	0.045 (0.024, 0.158) (n=17)	0.003 (0.002, 0.009)		
Mediterranean Sea	0.51 (0.18, 3.93) (n=16)	0.09 (0.06, 0.16)		
Global Mean	0.23 (0.03-2.21)	0.09 (0.06, 0.16)		
CB-101				
Arctic Ocean	0.040 (0.018, 1.549) (n=38)	0.038 (0.022, 0.076)		
North Atlantic	0.39 (0.05, 0.61) (n=15)	0.02 (0.01, 0.05)		
South Atlantic	0.33 (0.05, 0.52) (n=54)	<0.02		
Eq. and S. Pacific	1.54 (0.26, 6.35) (n=10)	< 0.005		
Southern Ocean	0.38 (0.10, 0.91) (n=19)	< 0.001		
Mediterranean Sea	0.76(0.39, 1.89) (n=7)	0.05 (0.03, 0.06)		
Global Mean	0.30 (0.03, 1.78)	0.01 (<0.06)		
CB-153				
Arctic Ocean	0.039 (0.005, 1.425) (n=18)	0.142 (0.097, 0.352)		
North Atlantic	0.14 (0.02, 1.06) (n=/)	0.11(0.07, 0.46)		
South Atlantic	0.040(0.009, 0.200) (n=8)	0.009 (< 0.0/1)		
Southern Ocean	0.068 (0.035, 0.347) (n=19)	0.001 (< 0.004)		
Mediterranean Sea	1.1/(0.13, 5.54) (n=20)	0.36(0.18, 0.45)		
Global Mean	0.082 (0.010, 1.766)	0.122 (<0.427)		
CB-180				
Arctic Ocean	0.020 (0.004, 0.193) (n=16)	0.008 (0.006, 0.024)		
North Atlantic	0.080(0.045, 0.244) (n=4)	0.022 (0.010, 0.045)		
South Atlantic	0.032 (0.028, 0.053) (n=4)	0.001 (<0.003)		
Southern Ocean	0.012 (0.002, 0.117) (n=18)	< 0.0003		
Mediterranean Sea	0.35 (0.06, 5.81) (n=22)	0.04 (0.01, 0.44)		
Global Mean	0.053 (0.04, 0.603)	0.008 (<0.041)		

 Table S3. Modeled and measured dissolved seawater concentrations.

Epi- and Mesopelagic Zone (top 1000 m)			Bathypelagic Zone (> 1000 m)			
Ocean Basin	Observed median/ percentiles	5 (pg/L)	Modeled median/ percentiles (pg/L)	Observed median/ percentile (pg/L)	es	Modeled median/ percentiles (pg/L)
CB-28						
Arctic Ocean	0.19 (0.03, 0.57)	(n=43)	0.29 (0.15, 0.54)	0.22 (0.12, 0.30)	(n=3)	1.49 (0.72-2.04)
North Atlantic	0.42 (0.13, 2.40)	(n=13)	0.09 (0.02, 0.18)	NA		
South Atlantic	0.12 (0.01, 1.00)	(n=18)	< 0.30	0.49	(n=1)	2.55
Eq. and S. Pacific	0.76 (0.33, 2.45)	(n=16)	< 0.01	NA		
Southern Ocean	0.045 (0.024, 0.158)	(n=17)	0.003 (0.002, 0.009)	NA		
Global Mean	0.24 (0.03, 2.27)		0.08 (<0.43)	0.26 (0.12, 0.49)		1.76 (0.72, 2.55)
CB-101						
Arctic Ocean	0.040 (0.018, 1.458)	(n=40)	0.037 (0.014, 0.076)	0.08 (0.03, 0.14)	(n=3)	0.04 (0.02, 0.06)
North Atlantic	0.39 (0.05, 0.60)	(n=20)	0.02 (0.01, 0.03)	0.27 (0.11, 0.70)	(n=7)	0.22 (0.05, 0.43)
South Atlantic	0.35 (0.06, 1.54)	(n=58)	< 0.01	2.50	(n=1)	0.39
Eq. and S. Pacific	1.54 (0.26, 6.35)	(n=10)	< 0.01	NA		
Southern Ocean	0.38 (0.10, 0.91)	(n=19)	< 0.001	NA		
Global Mean	0.33 (0.03, 2.19)		0.01 (<0.06)	0.24 (0.04, 2.23)		0.25 (0.02, 0.39)
CB-153						
Arctic Ocean	0.049 (0.005, 1.419)	(n=20)	0.138 (0.058, 0.352)	0.004 (0.004, 0.150) (n=3)	0.114 (0.071, 0.161)
North Atlantic	0.10 (0.02, 0.14)	(n=12)	0.07 (0.05, 0.11)	0.22 (0.07, 0.82)	(n=10)	0.85 (0.29, 5.85)
South Atlantic	0.062 (0.010, 3.470)	(n=12)	0.016 (<0.184)	2.6	(n=1)	0.94
Southern Ocean	0.068 (0.035-3.47)	(n=19)	0.001 (<0.004)	NA		
Global Mean	0.13 (0.01, 3.05)		0.13 (<0.42)	0.19 (<1.90)		0.77 (0.09, 5.85)
CB-180						
Arctic Ocean	0 020 (0 004 0 192)	(n=16)	0.008 (0.006 0.024)	NΔ		NΔ
North Atlantic	0.020 (0.004, 0.172)	(n = 1)	0.01	0.06(0.03-0.29)	(n=8)	0.20(0.02-1.10)
South Atlantic	0.00 0.13(0.03, 0.32)	(n=8)	<0.01	0.34	(n=1)	0.08
Southern Ocean	0.13(0.03, 0.52) 0.012(0.002, 0.117)	(n=18)	<0.001	NA	(111)	NA
Global Mean	0.012(0.002, 0.117)	(11 10)	0.008 (<0.041)	0.060 (0.031 0.338	a	0 079 (0 034 1 072)
Modeled concer	ntrationa ware cor	nnorad	to monguromente	collected betwee	n 2000	ond 2015 and
	Mations were con					2013 and 2013 and 14
matched by yea	r. Measurements	nclude	a cover the Arctic	: Ocean [<i>Booij et</i>	<i>al.</i> , 20	114; Galban-

matched by year. Measurements included cover the Arctic Ocean [*Booij et al.*, 2014; *Galbán-Malagón et al.*, 2012; *Gioia et al.*, 2008a; *Gustafsson et al.*, 2005; *Sobek and Gustafsson*, 2014], the North Atlantic [*Galbán-Malagón et al.*, 2012; *Gioia et al.*, 2008b; *Gioia et al.*, 2008a; *Lohmann et al.*, 2012; *Sun et al.*, 2016], the South Atlantic [*Booij et al.*, 2014; *Gioia et al.*, 20108b; *Lohmann et al.*, 2012; *Sun et al.*, 2016], the Pacific Ocean [*Zhang and Lohmann*, 2010], the Indian Ocean [*Booij et al.*, 2014], and the Southern Ocean [*Galbán-Malagón et al.*, 2013].

Figure S1. Modeled vertical profiles from five sensitivity simulations. Panel a shows vertical profiles of CB-28 with uniform degradation (orange), photolytic degradation (green) and combined photolytic and biotic degradation (blue). Panel b shows vertical profiles of CB-153 using log K_{OC} of 5.82 (pink), 7.64 (dark blue) and 8.32 (dark-green).

Figure S2. Measured PCB depth profiles of a) CB-28, b) CB-101, c) CB-153 and d) CB-180. Profiles are from the Tropical Atlantic [*Booij et al.*, 2014; *Sun et al.*, 2016], the North Atlantic [*Booij et al.*, 2014] and the Arctic Ocean [*Gustafsson et al.*, 2005; *Sun et al.*, 2016]. Concentrations at depth exceed the surface concentrations wherever surface concentrations exist and peak between 40 and 2500 m. Reported maximum concentrations are 1.30 pg CB-28 L⁻¹, 3.3 pg CB-101 L⁻¹, 3.5 pg CB-153 L⁻¹ and 0.34 pg CB-180 L⁻¹.

Figure S3. Changes in PCB residence times in the upper 1000 m between 1970-2015.

Figure S4. Changes in CB-101 and CB-180 mass distribution between 1930-2015. Northern Hemisphere basins are shades of blue and Southern Hemisphere basins are shades of red/orange.

Table S4. Modeled best estimate for 2015 PCB reservoir (kg) and mass flows (kg yr⁻¹) in the upper ocean (top 1000 m) using high K_{OC} and a combination of photolytic and biotic degradation.

	CB-28	CB-101	CB-153	CB-180
Arctic Ocean				
Reservoir	1 089	99	1 047	98
Atm. deposition	752	129	1 935	193
Upward/downward vert. transport ^a	103/-85	5/-4	18/-16	1/-1
Hor. Transport ^b	-45	-2	-3	0
Particle sinking	-174	-43	-622	-64
Burial	-151	-51	-944	-96
Degradation	-82	-1	-4	0
Evasion	-369	-31	-163	-8
North Atlantic				
Reservoir	2 905	404	3 467	339
Atm. deposition	2 356	418	5 658	623
Upward/downward vert. transport ^a	192/-227	20/-22	106/-142	9/-13
Hor. transport	-1 108	-275	-933	-106
Particle sinking	-525	-220	-3 593	-419
Burial	-225	-78	-1 395	-163
Degradation	-803	-37	-137	-9
Evasion	-907	-113	-645	-40
North Pacific				
Reservoir	1 644	272	2 161	181
Atm. deposition	1 846	424	4 520	409
Upward/downward vert. transport ^a	29/-31	3/-3	13/-20	1/-2
Hor. transport	-10	-1	-1	0
Particle sinking	-690	-286	-3 439	-318
Burial	-156	-49	-714	-67
Degradation	-492	-23	-39	-2
Evasion	-607	-75	-236	-10
Mediterranean Sea				
Reservoir	363	244	1 257	117
Atm. deposition	309	66	688	87
Upward/downward vert. transport ^a	14/-14	23/-21	76/-71	4/-4
Hor. transport	0	-1	-17	-3
Particle sinking	-9	-26	-282	-41
Burial	-10	-14	-232	-34
Degradation	-238	-24	-108	-9
Evasion	-69	-22	-161	-13
Eq. and South Atlantic				
Reservoir	1 707	329	1 540	142
Atm. deposition	438	102	894	98
Upward/downward vert. transport ^a	41/-56	7/-5	24/-17	2/-2

Hor. transport	871	171	446	20
Particle sinking	-72	-44	-486	-64
Burial	-10	-7	-94	-11
Degradation	-315	-33	-135	-11
Evasion	-99	-38	-255	-20
Eq. and South Pacific				
Reservoir	1 357	252	992	73
Atm. deposition	485	145	983	97
Upward/downward vert. transport ^a	54/-33	15/-13	30/-24	2/-1
Hor. transport	25	-2	-5	0
Particle sinking	-144	-77	-782	-85
Burial	-5	-6	-69	-8
Degradation	-355	-39	-87	-5
Evasion	-117	-50	-186	-10
Indian Ocean				
Reservoir	247	75	353	34
Atm. deposition	266	77	527	58
Upward/downward vert. transport ^a	23/-14	4/-2	14/-10	1/-1
Hor. transport	59	26	135	24
Particle sinking	-39	-42	-373	-45
Burial	-4	-6	-65	-8
Degradation	-183	-16	-45	-3
Evasion	-57	-19	-86	-6
Southern Ocean				
Reservoir	753	119	889	95
Atm. deposition	680	177	1 729	197
Upward/downward vert. transport ^a	265/-188	17/-13	77/-71	7/-7
Hor. transport	208	85	377	66
Particle sinking	-418	-153	-1 620	-188
Burial	-22	-7	-73	-8
Degradation	-102	-2	-3	0
Evasion	-243	-19	-49	-3

^aUpward/downward vert. transport denotes gross upward/downward and includes advective and diffusive vertical transport. ^bHor. transport denotes net horizontal diffusion and advection.