

Global Contaminants in an Era of Environmental Change

Elsie M. Sunderland (ems@seas.harvard.edu)
May 20, 2021

and Applied Sciences

We are conducting a global chemical experiment on our health

Environmental factors suspected as a primary cause of rise in chronic diseases

Little quantitative information relating large scale environmental releases of aquatic pollutants & health

1. Emissions

2. Deposition

3. Land

4. Ocean

7. Humans

6. Food webs

5. Bioavailability

Impacts of Global Change on Contaminants

- Seawater Temperature
- Ocean circulation

- Freshwater discharges
- Sea-ice melt

Three Examples

1. Emissions

1. How is climate change affecting Hg in fish?

3. What about PFOS in the North Atlantic?

6. Food webs

3. Land

Global biogeochemical Hg cycle

Methylmercury is a bioaccumulative neurotoxin

Societal Costs of methymercury exposure in US & Europe > \$15 B (Bellanger et al., 2013; Grandjean et al., 2012)

Global environmental quality affects chemical exposures from seafood

Impacts of acidification, circulation, and temperature small compared to variability in DOC and ecosystem productivity at base of food web

Warming affects fish metabolism and growth, MeHg elimination, prey availability, and species habitat

Species respond differently to temperature increase

>20% decrease between 1990-2010

Schartup et al., 2019, Nature

Current plateau in global Hg emissions means seawater warming will be important factor for marine fish MeHg

Streets et al., 2019, Atm Environ

Three Examples

1. Emissions

- 1. How is climate change affecting methylmercury in fish?
- 2. How is climate change affecting PCBs in the Arctic?
- 3. What about PFOS in the North Atlantic?

6. Food webs

3. Land

Stronger affinity of PCBs for particles leads to more rapid accumulation in the deep ocean

- 209 congeners; carcinogenic, neurotoxic
- Extremely hydrophobic
- Strong affinity for particles
- Variable volatility depending on MW

Relative enrichment of volatile congeners in the Arctic sustaining biological concentrations 30 years after ban

Surface Seawater Concentrations (10 m depth)

Observations (2000-2016) shown as circles

Sea-ice melt enhancing concentrations of PCBs in some regions of the Arctic

Difference between simulated concentrations of chlorinated biphenyl 153 (CB-153) with constant 1992-1996 meteorology and 1992 to 2015 meteorology

Three Examples

1. Emissions

2. Deposition

- 1. How is climate change affecting methylmercury in fish?
- 2. How is climate change affecting PCBs in the Arctic?
- 3. What about PFOS in the North Atlantic?

6. Food webs

3. Land

Poly- and perfluoroalkyl substances (PFAS) are both local and global contaminants

Modeled global PFOS discharges from rivers to the oceans ca. 2010

Modeled PFOS in North Atlantic seawater (10 m)

X. Zhang et al., 2017

Weakened AMOC = Greater inputs of bioaccumulative contaminants to the Arctic

Summary

1. Emissions

2. Deposition

- Climate warming likely to increase methylmercury in fish – especially migratory pelagic species due to shifts in bioenergetics
- Enrichment of some POPs in ice-free Arctic waters
- 3. AMOC creates a large sink in the deep North Atlantic for aqueous pollutants like PFOS from NA and Europe

7. Humans

6. Food webs

3. Land

4. Ocean

5. Bioavailability

