Environ Health Perspect

DOI: 10.1289/EHP4093

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to <u>508 standards</u> due to the complexity of the information being presented. If you need assistance accessing journal content, please contact <u>ehp508@niehs.nih.gov</u>. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Tap Water Contributions to Plasma Concentrations of Poly- and Perfluoroalkyl Substances (PFAS) in a Nationwide Prospective Cohort of U.S. Women

Xindi C. Hu, Andrea K. Tokranov, Jahred Liddie, Xianming Zhang, Philippe Grandjean, Jaime E. Hart, Francine Laden, Qi Sun, Leo W. Y. Yeung, and Elsie M. Sunderland

Table of Contents

Section S1. Supplemental information on methods.

Literature review for toxicokinetic (TK) modeling parameters

Section S2. Supporting Tables and Figures.

Table S1. Drinking water guideline levels for PFASs.

Table S2. Comparison of demographic, biometric and lifestyle factors for Nurses' Health Study participants included in this study and the full cohort.

Table S3. PFASs measured in drinking water and limits of detection (LOD).

Table S4. LC-MS/MS and EOF recovery and precision results.

Table S5. PFASs measured in plasma samples and coefficient of variation (CV%).

Table S6. Summary of toxicokinetic model parameters.

Table S7. Mean and variance of reported values on PFAS half-lives in human plasma or serum (in years).

Table S8. Drinking water samples collected in 2016.

Table S9. Search strategy used to identify PFAS industrial sources in Toxic Release Inventory.

Table S10. Modeled relative source contribution (%) of tap water to overall PFAS exposure among 110 Nurses' Health Study participants in 1989/1990.

Table S11. Modeled relative source contribution (%) of tap water to overall PFAS exposure stratified by number of years living in the current residence.

Table S12. Comparison of the relative source contribution (RSC) of tap water estimated using the deterministic toxicokinetic model and estimated using a Monte Carlo (MC) simulation.

Figure S1. Chromatograms of PFASs in an extract of HDPE water sampling bottle, analyzed using an Agilent 6460 LC-MS/MS equipped with an online-SPE system (Agilent 1290 Infinity Flex Cube) in dynamic multiple reaction mode.

Figure S2. The distribution of estimated median relative source contribution from tap water among 300 Monte Carlo simulations that consider interindividual variability in TK parameters and drinking water consumption rates.

Figure S3. Sensitivity analysis showing contribution of each input parameter of the onecompartment toxicokinetic model to the variability of estimated relative source contribution of tap water. Contribution of different input parameters was calculated as the square of the correlation coefficient between input parameter and estimated RSC, normalized to the sum of the squared correlation coefficients (Wang et al. 2016). V_D stands for volume of distribution, DW stands for drinking water consumption rate.

Figure S4. Number of relevant industrial sites in Massachusetts from 1987 to 2015, as reported in EPA Toxic Release Inventory database. No information on the magnitudes of PFAS releases is available in this database so we identified relevant industrial sources following the methods outline in previous work using the North American Industrial Classification System (NAICS) code (Zhang et al. 2016). Full list of NAICS code is provided in Table S10.

References

Section S1: Supplemental information on methods

Literature review for toxicokinetic (TK) modeling parameters

We searched PubMed database for literature containing half-life and volume of distribution for the five PFASs included in the TK modeling. Search query was conducted in December 2017 using the terms ("rate of decline" [Title] OR "Fluorocarbons/pharmacokinetics" [MeSH Terms] OR "pharmacokinetics" [MeSH Terms] OR "toxicokinetics" [MeSH Terms] OR half-life [MeSH Terms] OR half-lives[MeSH Terms] OR "half life"[MeSH Terms] OR "half lives"[MeSH Terms] OR "serum and urine"[Title]) AND (PFOA[Title] OR PFOS[Text Word] OR PFHxS[Text Word] OR PFNA[Text Word] OR PFDA[Text Word] OR PFAS[Text Word] OR PFC[Text Word] OR "perfluoroalkyl*"[Text Word] OR "polyfluoroalkyl*"[Text Word] OR "perfluoroocta*"[Text Word] OR "perfluoronona*"[Text Word] OR "perfluorohexa*"[Text Word] OR "perfluorodeca*"[Text Word] OR "perfluooctanoic*"[Text Word]) AND (human[Title/Abstract] OR serum[Title/Abstract] OR "worker*"[Title/Abstract] NOT animal NOT teenager[Title/Abstract] NOT child*[Title/Abstract). 39 publications were found. After initial examination of titles and abstracts, 14 were deemed relevant. The references cited in the 14 studies were also examined for values of half-life and volume of distribution. Finally 9 studies were used to provide data on half-life and volume of distribution (Table S6 and Table S7).

Six studies reported values for estimated half-lives of PFASs in human plasma (Table S7). (Olsen et al. 2007) was the only study that reported half-lives for PFOS and PFHxS based on actual longitudinal observations of plasma concentrations. Other studies such has (Zhang et al. 2013) and (Worley et al. 2017) reported half-lives for PFOS and PFHxS based on urine elimination, but they were not included because urine elimination is not major elimination pathway for perfluoroalkyl sulfonates (Zhang et al. 2013).

Section S2: Supporting Tables and Figures

Table S1.	Drinking	water	guideline	levels	for	PFASs

Agency	Year	Guideline value (ng/L)	Reference
Sum of multiple PFASs			
Sweden	2014	90 for 11 PFASs	(Swedish National Food Agency 2014)
Denmark	2015	100 for 12 PFASs	(The Danish Environmental Protection Agency 2015)
Vermont, U.S. <i>PFOS</i>	2016	20 for five PFASs	(Vermont Department of Health 2018)
Michigan, U.S.	2013	11	(Michigan Department of Environmental Quality 2013)
New Jersey, U.S.	2018	13	(New Jersery Department of Environmental Protection 2018)
Minnesota, U.S.	2017	27	(Minnesota Department of Health 2017a)
Australia	2017	70	(Australian Department of Health 2016)
U.S. EPA	2016	70 for PFOS+PFOA	(U.S. Environmental Protection Agency 2016)
Germany	2006	100 for PFOS+PFOA	(German Ministry of Health 2006)
United Kingdom	2009	300	(U.K. Drinking Water Inspectorate 2009)
Netherland	2011	530	(National Institute for Public Health and
	-		the Environment (RIVM) 2010)
Canada	2016	600	(Health Canada 2016a)
PFOA			
New Jersey, U.S.	2017	14	(New Jersery Department of
Minnesota U.S.	2010	35	Environmental Protection 2017a)
Minnesota, U.S.	2018 2016	55 70 for PFOS+PFOA	(Minnesota Department of Health 2018a)
U.S. EPA	2016	/0 10F PFOS+PFOA	(U.S. Environmental Protection Agency 2016)
Germany	2006	100 for PFOS+PFOA	(German Ministry of Health 2006)
Canada	2016	200	(Health Canada 2016b)
United Kingdom	2009	300	(U.K. Drinking Water Inspectorate 2009)
Australia PFBS	2016	560	(Australian Department of Health 2016)
Minnesota, U.S.	2017	2000	(Minnesota Department of Health 2017b)
Canada	2017	15,000	(Health Canada 2016c)
PFBA	2010	15,000	(Treatili Callada 2010c)
Minnesota, U.S.	2017	7000	(Minnesota Department of Health 2018b)
Canada	2017	30,000	(Health Canada 2016c)
PFHxS	2010	50,000	(meanin Canada 2010c)
Australia	2017	70	(Australian Department of Health 2016)
Canada	2016	200	(Health Canada 2016c)
PFNA			
New Jersey, U.S.	2017	13	(New Jersery Department of Environmental Protection 2017b)
Canada	2016	200	(Health Canada 2016c)

	Matched plasma and tap water samples	Tap water samples only	Rest of cohort
	110	115	121324
n	52.9 ± 6.4	54.6 ± 7.1	54.8 ± 7.2
Age, yr	105 (050)	110 (050)	
White	105 (95%)	112 (97%)	113,725 (94%)
	25.8 ± 4.6	25.3 ± 4.7	25.9 ± 4.7
BMI, kg m ⁻² Weight, lb	152.6 ± 28.8	151.2 ± 29.8	136.4 ± 55.7
Parity			
No birth	5 (5%)	5 (4%)	7,299 (6%)
1-3 birth	69 (63%)	77 (67%)	74,769 (62%)
3+ births	36 (33%)	33 (29%)	39,256 (32%)
Breastfeeding duration ^b			
Never	43 (39%)	50 (43%)	51,098/100,768 (51%)
< 12months	37 (34%)	39 (34%)	31,966/100,768 (32%)
>= 12months	30 (27%)	26 (23%)	17,704/100,768 (18%)
Menstruation status			
Premenopause	23 (21%)	21 (18%)	20,949 (17%)
Postmenopause	87 (79%)	94 (82%)	94,128 (78%)
Seafood, servings day ⁻¹	0.3 ± 0.3	0.3 ± 0.3	0.2 ± 0.3
Popcorn, servings day ⁻¹	0.2 ± 0.2	0.1 ± 0.2	0.2 ± 0.4
Years residing at current location	1		
<2	8 (7%)	6 (5%)	12,899/109,152 (12%)
2~4	17 (15%)	17 (15%)	8,710/109,152 (8%
4~14	28 (25%)	46 (40%)	32,114/109,152 (29%
>14	57 (52%)	46 (40%)	55,429/109,152 (51%

Table S2. Comparison of demographic, biometric and lifestyle factors for Nurses' Health Study participants included in this study and the full cohort.

^aDaily tap water consumption calculated as the sum of tap water consumed at all locations. ^bBreastfeeding duration based on total months spent nursing all children reported in 1986 NHS questionnaire data. Table S3. PFASs measured in drinking water and limits of detection (LOD)

Analyte ^a	Acronym	Carbon-	Molecular ion	LOD (ng/L)
		chain length		
Carboxylic acids (PFCAs)				
Perfluoropentanoic acid	PFPeA	5	$F(CF_2)_4CO_2^-$	0.14 - 1.9
Perfluoroheptanoic acid	PFHpA	7	$F(CF_2)_6CO_2^-$	0.14 - 1.6
Linear perfluorooctanoic acid	nPFOA	8	$F(CF_2)_7CO_2^-$	0.17 - 0.8
Branched perfluorooctanoic acid	brPFOA	8	$F(CF_2)_7CO_2^-$	0.1 - 1.1
Linear perfluorononanoic acid	nPFNA	9	$F(CF_2)_8CO_2$	0.11 - 0.4
Branched perfluorononanoic acid	brPFNA	9	$F(CF_2)_8CO_2$	0.12 - 0.6
Perfluorodecanoic acid	PFDA	10	$F(CF_2)_9CO_2^-$	0.14 - 1.9
Perfluoroundecanoic acid	PFUnDA	11	$F(CF_2)_{10}CO_2^{-1}$	0.14 - 2.2
Perfluorododecanoic acid	PFDoDA	12	$F(CF_2)_{11}CO_2$	0.27 - 6.0
Sulfonic acids (PFSAs)				
Perfluorobutane sulfonic acid	PFBS	4	$F(CF_2)_4SO_3^-$	0.14 - 0.5
Linear perfluorohexane sulfonic acid	nPFHxS	6	$F(CF_2)_6SO_3^-$	0.12 - 0.5
Branched perfluorohexane sulfonic acid	brPFHxS	6	$F(CF_2)_6SO_3^-$	0.14 - 0.9
Linear perflourooctane sulfonic acid	nPFOS	8	$F(CF_2)_8SO_3^-$	0.2 - 1.4
Branched perflourooctane sulfonic acid	brPFOS	8	$F(CF_2)_8SO_3$	0.28 - 1.2
Perfluorodecane sulfonic acid	PFDS	10	$F(CF_2)_{10}SO_3^{-1}$	0.05 - 2.3

Table S4. LC-MS/MS and EOF recovery and precision results.

	University of Southern Denmark ¹		Harva	Harvard University ²		Örebro University ³			
	LOD	% recovery	CV	LOD	% recovery	CV	LOD	% recovery	CV
	(ng/mL)			(ng/L)			(ng/L)		
Sample matrix	Hu	man plasma			Water			Water	
PFCAs									
PFPeA	0.03	99.9	4.2	0.14-1.9	80.2	16	0.1	88.6	2.4
PFHxA	0.03	96.6	4.6	30.1	ND^*	ND	0.1	90.7	2.2
PFHpA	0.03	106	11	0.14-1.6	97.9	15	0.1	90.9	2.7
PFOA	0.03	99.1	7.5	0.1 -1.1	88.4	9.6	0.1	90.4	1.6
PFNA	0.03	109	7.0	0.11 –	90.1	5.7	0.1	113	2.0
				0.6					
PFDA	0.03	89.9	11	0.14-1.9	87.6	9.2	0.1	89.1	3.9
PFUnDA	0.03	92.7	10	0.14-2.2	87.1	6.0	0.1	85.9	1.7
PFDoDA	0.03	106	18	0.27-6.0	85.8	7.3	0.1	76.7	4.6
PFSAs									
PFBS	0.03	ND	ND	0.14-0.5	90.1	15	0.1	87.4	2.4
PFHxS	0.03	104	4.0	0.12-0.9	94.9	12	0.1	90.1	4.4
PFOS	0.03	107	7.1	0.2-1.4	97.9	13	0.1	91.0	4.6

PreFOS							
N-EtFOSAA	0.03	87.7	11	Not	0.2	83.0	2.2
				measured			
N-MeFOSAA	0.03	86.7	8.3	Not	0.4	86.0	2.6
				measured			
EOF^4	Not			Not	10	96.0	14
	measured			measured			

ND denotes below detection.

¹This lab specializes in analysis of PFASs in human plasma.
²This lab specializes in analysis of PFASs in water.
³This lab specializes in analysis of Extractable Organic Fluorine (EOF)
⁴EOF assays were measured in the 5 tap water samples shown in Table S8 as a proxy measure of the total burden of fluorinated compounds.

	<u>a</u>	CT L 1		.
Analyte	CV	CV by	Max CV	Included in toxicokinetic
	%	batch	%	model?
nPFOS	8.68	7.22	12.43	Used + Batch correction ^a
brPFOS	12.97	8.71	13.15	Used + Batch correction
PFNA	14.14	11.81	17.75	Used
N-MeFOSAA	20.27	18.9	22.02	Not measured in tap water
PFOA	22.27	14.26	25.29	Used + Batch correction
PFUnDA	29.36	22.15	41.25	Not Use
PFHxS	31.53	14.71	47.96	Used + Batch correction
PFDA	38.98	17.15	73.63	Not Used
PFDoDA	44.62	23.12	70.87	Not Used
N-EtFOSAA	49.71	41.17	62.14	Not Used
PFHpA	80.54	58.78	91.36	Not Used

Table S5. PFASs measured in plasma samples and coefficient of variation (CV%)

^aBatch effects were corrected following methods outlined by Rosner et al.(2008) A linear model was first fit to regress PFAS concentrations on batch indicator dummy variables. PFAS concentrations were then recalibrated by subtracting the difference between the coefficient of each individual batch and the average of the coefficients of all batches

Parameter	Definition	Equation	Reference
dC _{plasma,t}	Change in concentration	$\frac{intake_t}{V_D} - k_E \times C_{plasma,t}$	
dt	of plasma PFAS over time (ng/mL/day)	V_D	
V_D	Volume of distribution (mL/kg)	PFOA: LN(ln(170), ln(1.7)) ^a	(Thompson et al. 2010
		PFNA: LN(ln(243.1), ln(48.9))	(Ohmori et al. 2003)
		nPFOS: LN(ln(230), ln(2.25))	(Thompson et al. 2010
		brPFOS: LN(ln(230), ln(2.25))	(Thompson et al. 2010
		PFHxS: LN(ln(213), ln(28))	(Sundström et al. 2012
$t_{1/2}$	Half-life	PFOA: LN(ln(4.7), ln(1.2))	Weighted average, see Table S
	(year)	PFNA: LN(ln(2.7), ln(2.0))	Weighted average, see Table S ²
		nPFOS: LN(ln(4.8), ln(1.1)	(Olsen et al. 2007
		brPFOS: LN(ln(4.8), ln(1.1))	(Olsen et al. 2007
		PFHxS: LN(ln(7.3), ln(1.1))	(Olsen et al. 2007
k_E	Elimination rate (day ⁻¹)	ln(2)	·
C	-	t _{1/2} * 365	
$C_{plasma,s.s.}$	Steady-state plasma PFASs (ng/mL)	$\frac{DW \times C_{water}}{bw \times V_D \times k_E}$	
DW	Drinking water intake (L/day)	Questionnaire data from 1990	This worl
bw	Body weight (kg)	Questionnaire data from 1990	This worl
C_{water}	Tap water PFASs in 1989/1990 (ng/L)	PFAS measured in water samples collected in 1989-90	This worl

Table S6. Summary of toxicokinetic model parameters

^aLN(ln(GM), ln(variance)) stands for log-normal distribution with geometric mean (GM) and variance.

Chemi cal	Ref	n	Arit hme tic mea n	Geometric Mean (GM)	95% CI (AM)	95% CI (GM)	Range	ln(GM)	ln(variance)
			(A M)						
PFOA	(Bartell et al. 2010)	200	111)	2.3		2.1-2.4	1.5-4.6	0.83	0.002
	(Olsen et al. 2007)	26	3.8	3.5	3.1-4.4	3.0-4.1		1.25	0.006
	(Seals et al. 2011)	602 (residents of Little Hocking)		2.9			2.5-3.0	1.06	0.002
	(Seals et al. 2011)	971 (residents of Lubeck)		8.5			5.9-10.3	2.14	0.015
	(Zhang et al. 2013)	20 (young female)	2.1	1.5			0.19-5.2	0.41	0.474
	(Zhang et al. 2013)	66 (old female and male)	2.6	1.2			0.059-14	0.18	1.008
	(Costa et al. 2009)	16	5.1	2.8			2.6-9.7	1.03	0.001
	(Worley et al. 2017)	45	3.9				3.5 - 4.1	1.36	0.001
<u>Weight</u>	ed average for PFOA	<u>a</u>						<u>1.55</u>	<u>0.047</u>
PFNA	(Zhang et al. 2013)	16	2.5	1.7			0.38-7.7	0.53	0.249
	(Zhang et al. 2013)	50	4.3	3.2			0.34-20	1.16	0.558
<u>Weight</u>	ed average for PFNA	<u>a</u>						<u>1.01</u>	<u>0.486</u>
PFOS	(Olsen et al. 2007)	26	5.4	4.8	3.9-6.9	4.0-5.8		1.57	0.008
PFHxS	(Olsen et al. 2007)	26	8.5	7.3	6.4-10.6	5.8-9.2		1.99	0.013

Table S7. Mean and variance of reported values on PFAS half-lives in human plasma or serum (in

years)

^aWhen there are multiple human studies available for estimating the half-lives of PFASs, weighted average was calculated where the weight is the inverse of the variance of half-lives reported in each study.

Site	Sampling		Sampling date
	location	samples	
MA1	Kitchen tap	2	10/4/2016
MA2	Kitchen tap	2	9/25/2016
MA3	Kitchen tap	2	9/30/2016
MA4	Kitchen tap	2	9/25/2016
MA5	Kitchen tap	2	10/2/2016

Table S8. Drinking water samples collected in 2016

Note: water samples were used for a pilot analysis of EOF as a proxy for the total burden of fluorinated compounds in tap water.

NAICS	Description of Industry	Number of	Category in Figure S3
code		sites in US	
22132	Sewage treatment facilities	32	Waste treatment
562	Waste management and remediation	453	Waste treatment
313	Textile mills	956	Textile mills
322	Paper manufacturing	1455	Paper manufacturing
323	Printing and related support activities	991	Printing
324	Petroleum and coal products	1549	Petroleum sector
	manufacturing		
3255	Paint, coating, and adhesive manufacturing	1747	Chemical manufacturing
32591	Printing ink manufacturing	324	Chemical manufacturing
3328	Metal coating, engraving, heat treating and	3313	Metal coating
	allied activities		
3344	Semiconductor manufacturing	2199	Semiconductor manufacturing
48811	Airport operation	7	Airports and military bases
928110	National Security	439	Airports and military bases
PFOA stew	vardship program ^a	116	EPA PFOA stewardship program

Table S9. Search strategy used to identify PFAS industrial sources in Toxic Release Inventory

^aNote: Industrial sites participating in EPA PFOA stewardship program is identified by a combination of facility name and NAICS code. The facility name must have at least one of 3M, Arkema, Asahi, Basf, Clariant, Daikin, Dyneon, Dupont, Solvay Solexis. In addition, the NAICS code needs to be one of all other basic organic chemical manufacturing (325199), all other miscellaneous chemical product and preparation manufacturing (325998), plastic material and resin manufacturing (325211), custom compounding of purchased resins (325991), noncellulosic organic fiber manufacturing (325222), nonferrous metal (except aluminum) smelting and refining (331410).

Table S10. Modeled relative source contribution (%) of tap water to overall PFAS exposure among

Chemical	>LOD n	25th percentile ^a	Median	Mean	75th percentile
PFOA	49	7.7	11.6	19.2	20.1
PFNA	30	6.4	13.1	16.1	21.2
nPFOS	57	0.9	2.2	3.6	4.8
brPFOS	49	1.2	3	4.5	6.5
PFHxS	66	14.6	34.1	47.5	60.7

110 Nurses' Health Study participants in 1989/1990.

^a25th percentile, median, mean and 75th percentile were calculated for individuals with tap water samples >LOD only

Table S11. Modeled relative source contribution (%) of tap water to overall PFAS exposure stratified by number of years living in the current residence.

Chemical		>LOD n	25th percentile ^a	Median	Mean	75th percentile
	current residence					
PFOA	<2	2	8.7	9.7	9.7	10.7
	2 ~ 4	6	4.8	8	10.6	17.7
	4 ~ 14	13	6.5	11.1	19.4	17.4
	>14	28	8.5	14.6	21.6	29.1
<i>p</i> -value ^b	0.44					
PFNA	<2	0	/	/	/	/
	2 ~ 4	3	4	5.1	12.2	16.9
	4 ~ 14	9	7.4	19.7	17.7	23.6
	>14	18	7.2	12.7	16	20.1
<i>p</i> -value	0.54					
nPFOS	<2	3	1.2	1.3	2.2	2.7
	2 ~ 4	7	2.3	2.6	3	3.4
	4 ~ 14	14	0.8	2.2	3.4	5.9
	>14	33	0.8	2.2	3.9	5.1
<i>p</i> -value	0.97					
brPFOS	<2	2	2.4	3.7	3.7	4.9
	2 ~ 4	7	2.2	3	2.9	3.9
	4 ~ 14	12	1.3	4.1	5.6	7.9
	>14	28	1.2	2.4	4.5	6.7
<i>p</i> -value	0.92					
PFHxS	<2	3	20.3	24.1	35	44.2
	2 ~ 4	14	10.7	23.9	36.3	48.1
	4 ~ 14	17	18.3	36	48.7	67.8
	>14	32	16.2	36.8	52.9	58.3
<i>p</i> -value	0.78	1 – eth				

^a25th percentile, median, mean and 75th percentile were calculated for individuals with tap water samples >LOD only

 ^{b}p -value was determined by the Kruskal-Wallis rank sum test of the difference between the RSC of tap water to plasma PFAS concentrations across different groups of years living in current residence

%		>LOD n^a	Median (95% PI) ^b	Mean (95% PI)	25th percentile (95% PI)	75th percentile (95% PI)
PFOA	Original ^c	49	11.6	19.2	7.7	20.1
	MC simulation ^d	49	12.0 (10.5, 13.7)	19.5 (18, 21.1)	6.7 (5.7, 7.7)	21.0 (17.3, 24.3)
PFNA	Original	30	13.1	16.1	6.4	21.2
	MC simulation	30	14.1 (8.7, 21.4)	24.3 (17.2, 34.5)	6.1 (3.7, 8.8)	30.5 (19.6, 45.7)
nPFOS	Original	57	2.2	3.6	0.9	4.8
brPFOS	MC simulation Original	57 49	2.2 (2.0, 2.5) 3.0	3.5 (3.4, 3.7) 4.5	0.9 (0.8, 1.0) 1.2	4.6 (4.1, 5.2) 6.4
PFHxS	MC simulation Original	49 66	2.8 (2.5, 3.2) 34.1	4.5 (4.2, 4.7) 47.5	1.1 (1.0, 1.3) 14.6	6.4 (5.6, 7.3) 60.7
11113	MC simulation	66	33.6 (28.9, 39)	47.5 52.9 (48.3, 58.4)	14.0 15.1 (12.6, 17.7)	64.8 (55.7, 75.7)

Table S12. Comparison of the relative source contribution (RSC) of tap water estimated using the

deterministic toxicokinetic model and estimated using a Monte Carlo (MC) simulation.

^aRSC is only estimated for NHS participants whose tap water were detectable of respective PFASs. ^bMean and the 95% probability interval (PI) of the median, mean, 25th and 75th percentile RSC (%) from tap water, for NHS participants whose tap water were detectable of respective PFASs. ^cOriginal is the same as Table S10. These are estimated RSC using the deterministic toxicokinetic model where input parameters (half-lives, volume of distribution, etc.) were set at the geometric mean stated in Table S7.

^dMC simulation was conducted by iteratively drawing random values from the probability distribution of input parameter for 300 times, estimating RSC using the toxicokinetic model and generating the median, mean, 25th and 75th percentile among the NHS participants whose tap water were detectable of respective PFASs.

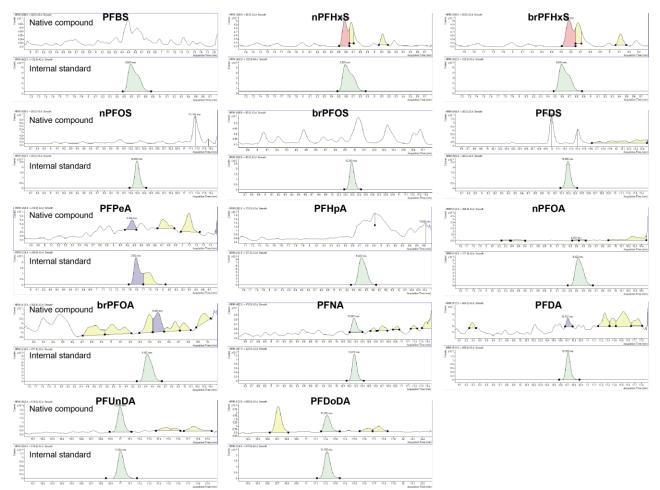


Figure S1. Chromatograms of PFASs in an extract of HDPE water sampling bottle, analyzed using an Agilent 6460 LC-MS/MS equipped with an online-SPE system (Agilent 1290 Infinity Flex Cube) in dynamic multiple reaction mode.

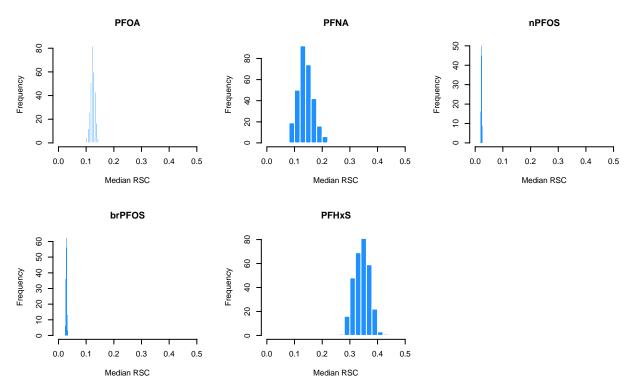


Figure S2. The distribution of estimated median relative source contribution from tap water among 300 Monte Carlo simulations that consider interindividual variability in TK parameters and drinking water consumption rates.

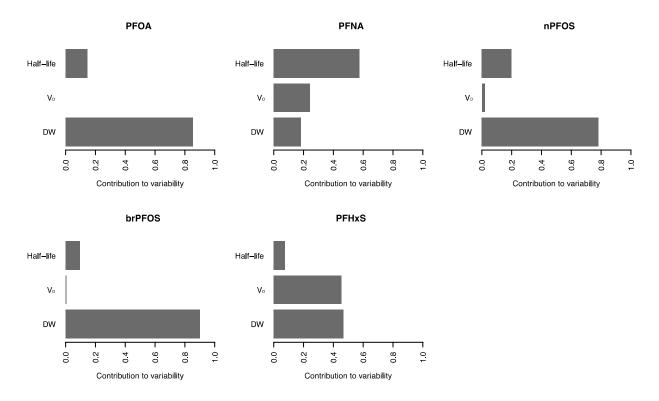


Figure S3. Sensitivity analysis showing contribution of each input parameter of the onecompartment toxicokinetic model to the variability of estimated relative source contribution of tap water. Contribution of different input parameters was calculated as the square of the correlation coefficient between input parameter and estimated RSC, normalized to the sum of the squared correlation coefficients (Wang et al. 2016). V_D stands for volume of distribution, DW stands for drinking water consumption rate.

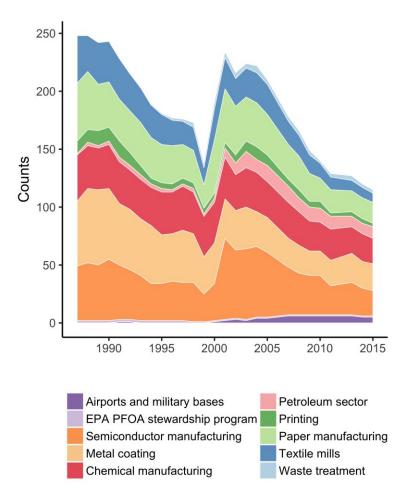


Figure S4. Number of relevant industrial sites in Massachusetts from 1987 to 2015, as reported in EPA Toxic Release Inventory database. No information on the magnitudes of PFAS releases is available in this database so we identified relevant industrial sources following the methods outline in previous work using the North American Industrial Classification System (NAICS) code (Zhang et al. 2016). Full list of NAICS code is provided in Table S10.

References:

Australian Department of Health. 2016. Health based guidance values for pfas for use in site investigations in australia. Available: <u>http://www.health.gov.au/internet/main/publishing.nsf/content/2200FE086D480353CA2580C9008</u> <u>17CDC/\$File/fs-Health-Based-Guidance-Values.pdf</u> [accessed Oct 10 2018].

Bartell SM, Calafat AM, Lyu C, Kato K, Ryan PB, Steenland K. 2010. Rate of decline in serum pfoa concentrations after granular activated carbon filtration at two public water systems in ohio and west virginia. Environ Health Perspect 118:222-228.

Costa G, Sartori S, Consonni D. 2009. Thirty years of medical surveillance in perfluooctanoic acid production workers. Journal of Occupational and Environmental Medicine 51:364-372.

German Ministry of Health. 2006. Provisional evaluation of pft in drinking water with the guide substances perfluorooctanoic acid (pfoa) and perfluorooctane sulfonate (pfos) as examples Available: <u>https://www.umweltbundesamt.de/sites/default/files/medien/pdfs/pft-in-drinking-water.pdf</u> [accessed Oct 10 2018].

Gomis MI, Vestergren R, Nilsson H, Cousins IT. 2016. Contribution of direct and indirect exposure to human serum concentrations of perfluorooctanoic acid in an occupationally exposed group of ski waxers. Environmental Science & Technology 50:7037-7046.

Health Canada. 2016a. Perfluorooctane sulfonate (pfos) in drinking water. Document for public consultation. Available: <u>http://healthycanadians.gc.ca/health-system-system-system-sante/consultations/perfluorooctane-sulfonate/alt/perfluorooctane-sulfonate-eng.pdf</u> [accessed Oct 10 2018].

Health Canada. 2016b. Perfluorooctanoic acid (pfoa) in drinking water. Document for public consultation. Available: <u>http://www.healthycanadians.gc.ca/health-system-systeme-sante/consultations/acide-perfluorooctanoic-acid/alt/perfluorooctanoic-eng.pdf</u> [accessed Oct 10 2018].

Health Canada. 2016c. Health canada's drinking water screening values for perfluoroalkylated substances (pfas). Available: <u>http://scottreid.ca/wp-content/uploads/2016/03/Health-Canada-PFAS-Screening-Values-Fact-Sheet-EN.pdf</u> [accessed Oct 10 2018].

Michigan Department of Environmental Quality. 2013. Rule 57 water quality values, surface water assessment section. Available: <u>http://www.michigan.gov/documents/deq/wrd-swas-rule57_372470_7.pdf</u> [accessed May 2016].

Minnesota Department of Health. 2017a. Human health-based water guidance table. Available: <u>http://www.health.state.mn.us/divs/eh/risk/guidance/gw/table.html</u> [accessed Oct 10 2018].

Minnesota Department of Health. 2017b. Toxicological summary for: Perfluorobutane sulfonate. Available: <u>http://www.health.state.mn.us/divs/eh/risk/guidance/gw/pfbssummary.pdf</u> [accessed Oct 10 2018].

Minnesota Department of Health. 2018a. Toxicological summary for: Perfluorooctanoate. Available: <u>http://www.health.state.mn.us/divs/eh/risk/guidance/gw/pfoa.pdf</u> [accessed Oct 10 2018].

Minnesota Department of Health. 2018b. Toxicological summary for: Perfluorobutanoate Available: <u>http://www.health.state.mn.us/divs/eh/risk/guidance/gw/pfba2summ.pdf</u> [accessed Oct 10 2018].

National Institute for Public Health and the Environment (RIVM). 2010. Environmental risk limits for pfos: A proposal for water quality standards in accordance with the water framework directive. Report 601714013/2010. Available: <u>http://www.xn--miljdirektoratet-oxb.no/PageFiles/25802/Horing2013-4141_vedlegg.pdf</u>. [accessed May 2016].

New Jersery Department of Environmental Protection. 2017a. Maximum contaminant level recommendation for perfluorooctanoic acid in drinking water. Available: <u>https://www.nj.gov/dep/watersupply/pdf/pfoa-recommend.pdf</u> [accessed Oct 10 2018].

New Jersery Department of Environmental Protection. 2017b. Christie administration takes action to enhance protection of new jersey's drinking water. Department of environmental protection moving forward with science-based health standards for pfoa and pfna. Available: <u>http://www.nj.gov/dep/newsrel/2017/17_0104.htm</u> [accessed Oct 10 2018].

New Jersery Department of Environmental Protection. 2018. Recommendations for maximum contaminant levels- perfluorooctane sulfonate (pfos), june 2018. Available: <u>https://www.state.nj.us/dep/watersupply/g_boards_dwqi.html</u> [accessed Oct 10 2018].

Ohmori K, Kudo N, Katayama K, Kawashima Y. 2003. Comparison of the toxicokinetics between perfluorocarboxylic acids with different carbon chain length. Toxicology 184:135-140.

Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. 2007. Halflife of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environmental Health Perspectives 115:1298-1305.

Rosner B, Cook N, Portman R, Daniels S, Falkner B. 2008. Determination of blood pressure percentiles in normal-weight children: Some methodological issues. American journal of epidemiology 167:653-666.

Seals R, Bartell SM, Steenland K. 2011. Accumulation and clearance of perfluorooctanoic acid (pfoa) in current and former residents of an exposed community. Environmental health perspectives 119:119-124.

Sundström M, Chang S-C, Noker PE, Gorman GS, Hart JA, Ehresman DJ, et al. 2012. Comparative pharmacokinetics of perfluorohexanesulfonate (pfhxs) in rats, mice, and monkeys. Reproductive Toxicology 33:441-451.

Swedish National Food Agency. 2014. Risk management - pfas in drinking water and fish. Available: <u>http://www.livsmedelsverket.se/livsmedel-och-innehall/oonskade-</u>

amnen/miljogifter/pfas-poly-och-perfluorerade-alkylsubstanser/riskhantering-pfaa-i-dricksvatten/ [accessed Oct 10 2018].

The Danish Environmental Protection Agency. 2015. Administrative considerations and determination of limit values for perfluorinated alkyl acid compounds (pfas compounds), incl. Pfoa, pfos and pfosa in drinking water, as well as soil and groundwater for assessment of contaminated grounds. Available: <u>https://mst.dk/media/91517/pfas-administrative-graensevaerdier-27-april-2015-final.pdf</u> [accessed Oct 10 2018].

Thompson J, Lorber M, Toms L-ML, Kato K, Calafat AM, Mueller JF. 2010. Use of simple pharmacokinetic modeling to characterize exposure of australians to perfluorooctanoic acid and perfluorooctane sulfonic acid. Environment International 36:390-397.

U.K. Drinking Water Inspectorate. 2009. Guidance on the water supply (water quality) regulations 2000 specific to pfos (perfluorooctane sulphonate) and pfoa (perfluorooctanoic acid) concentrations in drinking water. Available: <u>http://www.dwi.gov.uk/stakeholders/information-letters/2009/10_2009annex.pdf</u> [accessed Oct 10 2018].

U.S. Environmental Protection Agency. 2016. Drinking water health advisories for pfoa and pfos.

Vermont Department of Health. 2018. Drinking water health advisory for five pfas (per- and polyfluorinated alkyl substances). Available: <u>http://www.healthvermont.gov/sites/default/files/documents/pdf/ENV_DW_PFAS_HealthAdvisory.pdf</u>.

Worley RR, Moore SM, Tierney BC, Ye X, Calafat AM, Campbell S, et al. 2017. Per-and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environment international 106:135-143.

Zhang Y, Beesoon S, Zhu L, Martin JW. 2013. Biomonitoring of perfluoroalkyl acids in human urine and estimates of biological half-life. Environmental Science & Technology 47:10619-10627.