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45
46 Figure S1. Observed PFOA and PFOS concentration in New Hampshire private wells (n = 

47 2366).  Data are from NHDES domestic well sampling campaign, 2014 - 2017.1

48
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49 S1. Data processing steps for PFAS concentration data from New Hampshire (NH) 

50 domestic wells

51 One common limitation of secondary data is that samples measured at different times 

52 may have different detection limits, creating a multiple censoring problem (Table S1). We chose 

53 the median detection limit (DL) as a uniform DL and treated samples with DLs at or below this 

54 value as non-detects. The uniform DLs for PFPeA, PFHxA, PFHpA, PFOA, and PFOS were 5.0, 

55 8.0, 5.0, 8.0 and 5.0 ng/L, respectively. The DL of most is very close to the uniform DL so this 

56 does not significantly skew the sample distribution. We removed 254 (1.6%) samples with DLs 

57 that are more than five times of the uniform DL due to data quality concerns. 790 wells were 

58 sampled multiple times (2 to 48 times), often due to those wells having concentrations 

59 approaching but not exceeding the standard. For these wells, we use the average PFAS 

60 concentration detected. The mean coefficient of variation across multiple samples for the same 

61 well was below 25% for all PFAS, suggesting relatively low temporal variability.

62 Table S1. Detection limit (DL) for PFAS measured in domestic well waters in NH

DL (ng/L) †
Compound Name Acronym min median 75th 

percentile
98th 

percentile
max

Perfluoropentanoic acid PFPeA 0.015 4.5 4.7 5.0 10
Perfluorohexanoic acid PFHxA 0.015 4.5 4.6 8.0 10
Perfluoroheptanoic acid PFHpA 0.015 3.4 4.5 5.0 16
Perfluorooctanoic acid PFOA 0.015 2.0 2.0 8.0 8.0
Perfluorooctanesulfonic acid PFOS 0.015 4.0 4.5 5.0 10

63 † The distribution of the limit of detection for PFAS was calculated across all batches after extreme outliers were 
64 removed. We removed 254 (1.6%) of total samples where the DL was more than five times the median DL across 
65 batches.
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66 Table S2. NAICS codes for identifying PFAS sources in EPA Facility Registry Service

NAICS code Description of Industry Number of unique sites in NH 
313 Textile mills 28
322 Paper manufacturing 26
323 Printing and related support activities 100
324 Petroleum and coal products manufacturing 60

3255 Chemical manufacturing 24
32591 Printing ink manufacturing 7
3328 Metal coating, engraving, heat treating and allied activities 40
3344 Semiconductor and other electronic component manufacturing 124

67 Notes: We used the North American Industrial Classification System (NAICS) codes and the US EPA 
68 Facility Registry Service (FRS) codes that correspond to industries that are known to use and release 
69 PFAS We identified the locations of these potential PFAS sources using for any time before October 
70 2017, the year when the latest samples were collected.
71
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72

73 Figure S2. Sensitivity analysis of different atmospheric buffer distances on industrial 

74 impact scores for the plastics and rubber industry and textile manufacturing.

75
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76 S2. Detailed description of environmental predictors 

77 Environmental predictors considered in this work can be classified into four main categories: (1) 

78 geologic variables such as bedrock type, (2) variables reflecting soil geochemistry such as bulk 

79 density and sand/silt/clay content, (3) hydrologic variables such as precipitation and groundwater 

80 recharge, and (4) other features of the hydrologic landscape such as elevation, slope and land 

81 use. Well depth is often an important predictor for chemical concentrations in domestic wells,2 

82 but was not consistently collected in the NHDES sample campaign. We therefore used the 

83 annual minimum depth to water table in gSSURGO as a proxy.3 No statewide data were 

84 available for the groundwater table. Thus, we used elevation as a proxy. Datasets for NH were 

85 accessed through the US Geologic Survey and NHDES websites in the format of raster files or 

86 spatial shapefiles (Table S2). To assign independent variables to each well, we overlaid the raster 

87 or shapefile that contained data for NH with the well location in a Geographic Information 

88 System (GIS). Some variables were available at high spatial resolution. For example, data on  

89 soil geochemistry were available at the 10 m x10 m scale. Other variables such as groundwater 

90 recharge were available at the 1 km x1 km scale, and precipitation was available at 4 km x 4 km 

91 scale. In the infrequent event (less than 20 wells out of the 2383 wells) where the well location 

92 was not covered by the variable layer, missing values were imputed by the arithmetic mean of 

93 the variable across all wells with available information. We chose this imputation method 

94 because it preserves the mean distribution of variables.4

95
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96 Table S3. List of independent model variables (point sources and environmental factors)

Independent 
Variable min Q1 median Q3 P98 Max Units or 

Scale
Data 

Source
Point Source Impacts

Impact: Plastics 
and Rubber 
Products 
Manufacturing

0 0 1.11× 
10-3

6.22× 
10-2

3.42× 
10-1

9.23× 
10-1

km-1 [1]

15

Impact: Textiles 
Manufacturing 
and Related 
Activities

0 0 0 0 6.33× 
10-1

9.15× 
10-1

km-1  15

Impact: Airports 0 0 0 0 0 6.36× 
10-1

km-1
15

Impact: military 
sites 0 0 0 0 4.50× 

10-2
9.63× 
10-1

km-1  15

Impact: 
wastewater 
treatment plants

0 0 0 0 1.25× 
10-1

9.51× 
10-1

km-1

15

Impact: Potential 
sources 0 0 8.27× 

10-3
7.57× 
10-1 4.19 7.80 km-1  15

Geologic Variables
Bedrock Type: 
Metasedimentary 
and 
Metavolcanic 
Rocks of the 
Merrimack 
Trough

77.8% have value 1, 22.2% have value 0 Unitless[2] 16

Depth to bedrock 6.00× 10-5 30.8 30.8 30.8 41.0 76.0 meter [3] 17

Hydrologic Variables
Total monthly 
precipitation in 
the year that 
each well sample 
was taken

29.0 53.7 70.1 103 167 205 mm [4] 18

Mean annual 
natural ground-
water recharge, 
derived by 
multiplying a 
grid of base-flow 
index values by 
a grid of mean 
annual runoff 
values (from 
1951-1980)

216 266 273 275 314 410 mm/year 
[5]

19

Depth to water 
table - annual 
minimum

1.00× 10-5 52.7 52.7 52.7 77.0 153 cm 17

Slope gradient – 
difference in 
elevation 
between two 
points as a 
percentage of the 
distance between 
those points

1.00× 10-5 2.90 3.30 9.90 25.0 44.0 % 17
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Hydrologic 
Group Dominant 
Component: A – 
Low runoff 
potential

57.5% have value 1, 42.5% have value 0 unitless 17

Soil Geochemistry
Silt: Total - 
Mineral particles 
0.002 mm - 0.05 
mm in 
equivalent 
diameter as a 
weight 
percentage of <2 
mm fraction

2.00× 10-1 12.9 15.4 23.5 46.2 68.6 % 17

Clay: Total - 
Mineral particles 
less than .002 
mm in 
equivalent 
diameter as a 
weight 
percentage of <2 
mm fraction

3.00× 10-2 9.50× 
10-1 1.85 4.00 8.71 31.6 % 17

Sand: Total - 
Mineral particles 
greater than 0.05 
mm in 
equivalent 
diameter as a 
weight 
percentage of <2 
mm fraction

6.20× 10-1 64.0 79.5 81.2 85.9 95.0 % 17

Bulk Density at 
a water tension 
of 1/3 bar

5.50× 10-2 1.14 1.31 1.47 1.63 1.79 g/mL 17

Available Water 
Capacity[6] 4.02× 10-3 8.80× 

10-2
1.19× 
10-1

1.32× 
10-1

3.17× 
10-1

5.30× 
10-1

vol. 
water/vol. 

soil
17

Cation Exchange 
Capacity at pH 
7.0, as estimated 
by the 
ammonium 
acetate method

5.01× 10-3 9.00× 
10-2

7.65× 
10-1 1.44 6.48 59.3 meq/g 

soil
17

Soil organic 
carbon stock 
estimate in total 
soil profile (0 cm 
to reported depth 
of soil profile)

312 1.04 x 
104

1.23 x 
104

1.31 x 
104

2.50 x 
104

1.59 x 
105 g Carbon 17

Soil thickness 7.20× 10-1 14 20.4 45.6 105 149 cm 17

97
98 Notes:
99 [1] Impact is calculated as an exponential decay function of the Haversine distance between the point source and well. Only 

100 industries with elevation above a well and within the same 12-digit HUC were considered. 
101 [2] 1:250000 scale. 
102 [3] 10-meter resolution grid dataset. 
103 [4] 4-kilometer resolution grid dataset. 
104 [5] 1-kilometer resolution grid dataset
105 [6] The quantity of water that the soil is capable of storing
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106

107

Predicted

Detect Non-detect

Observed

Detect True positive (TP) False negative (FN)

Sensitivity

TP
TP + FN

Non-detect False positive (FP)
True negative

(TN)

Specificity

TN
TN + FP

Accuracy

TP + TN
TP + TN + FP + FN

108 Figure S3. Confusion matrix for categorical models (logistic regression and classification 

109 random forest).

110
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111 S3. Regression random forest model

112 We tested the performance of both continuous (regression random forest) and categorical 

113 (logistic regression and classification random forest) models. Continuous models predict the 

114 magnitude of PFAS concentrations likely to be found in a well, while categorical models predict 

115 the likelihood that concentrations fall below or above a threshold level. 

116 For the continuous model, we only considered wells with detectable PFAS due to the 

117 large number of measurements below detection. A natural log transformation was used to reduce 

118 impacts of extreme outliers on the model fitting process. Mean squared error (MSE) and a 

119 pseudo  were used to assess the model performance. We evaluated the relative importance of 𝑅2

120 predictors by random permutation and calculated the percent increase in MSE. Statistical 

121 analyses were conducted using the randomForest package in R 4.0.0.5

122 Performance of the continuous model (regression random forest) was moderate to poor 

123 across the five PFAS with pseudo-R2 values ranging from 0.024 for PFOS to 0.52 for PFPeA 

124 (Table S6).  This performance is similar to modeling studies for other toxicants in groundwater 

125 with a similar sample size (see SI Section S4 for more details). The lowest performance likely 

126 reflects the limited detectable concentration data available for PFOS (n = 465). The sample size 

127 for the regression random forest is much smaller than the categorical models due to the exclusion 

128 of samples below detection. The intended purpose of this type of statistical model is as a 

129 screening tool to prioritize field sampling. Thus, we conclude based on these results that 

130 classification models that can use all available data are preferable. Classification random forest 

131 models may be preferred over continuous models because they can use all data collected in 

132 monitoring programs, avoiding poor performance for PFAS like PFOS in this study that had a 

133 low overall frequency of detection.
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134 Table S4. Model performance for regression random forest

 PFPeA PFHxA PFHpA PFOA PFOS
n* 499 749 750 1658 465
Mean Squared Error 0.56 0.60 0.53 1.2 1.2
pseudo-R2 0.52 0.41 0.40 0.40 0.024

135 Note: *Regression random forest model has a smaller sample size than the other two methods because it was 
136 developed only on samples with detectable PFAS concentrations.
137

138
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139 Table S5. Standardizeda logistic regression model coefficients (± standard error).

 PFPeA PFHxA PFHpA PFOA PFOS PFAS

Industry¶

Plastics and rubber 1.2 ± 0.13*** 0.57 ± 0.12*** 0.88 ± 0.11*** 0.18 ± 0.09* 0.20 ± 0.11 0.33 ± 0.10***

Textile 
manufacturing -0.60 ± 0.18** -0.52 ± 0.13*** 0.42 ± 0.10** -0.29 ± 0.13* 0.28 ± 0.10**

Military sites -0.22 ± 0.13
WWTPb 0.53 ± 0.13*** 0.44 ± 0.11*** 0.28 ± 0.09** 0.19 ± 0.09* 0.40 ± 0.11***

Potential sources€ 0.31 ± 0.11** 0.24 ± 0.10*  0.43± 0.10***  
Geo

Bedrock type‡ 0.64 ± 0.16*** 0.69 ± 0.17*** 1.1 ± 0.15*** 1.3 ± 0.12*** 0.92 ± 0.11***

Depth to bedrock 0.19 ± 0.12*** -0.32 ± 0.12** -0.37 ± 0.10***  -0.38 ± 0.11***

Hydro
Monthly 
precipitation -0.29 ± 0.12* 0.32 ± 0.11**

Low runoff 
potential 0.53 ± 0.16** 0.57 ± 0.18** 0.33 ± 0.20 0.45 ± 0.19* 0.34 ± 0.10**

Water table depth 0.26 ± 0.11* -0.72 ± 0.12***

Groundwater 
recharge 0.26 ± 0.09**

Slope gradient 0.21 ± 0.13 0.19 ± 0.12  -0.19 ± 0.10 -0.20 ± 0.13* -0.17 ± 0.10
Soil

Percent clay -0.56 ± 0.12*** 0.19 ± 0.11 -0.39 ± 0.12***

Percent silt -0.43 ± 0.16**

Percent sand -0.25 ± 0.15 -0.69 ± 0.30 0.34 ± 0.10***

Bulk density 0.58 ± 0.28*

Available water 
capacity 0.37 ± 0.13** 0.34 ± 0.12** -0.32 ± 0.12**

Organic carbon 
content 0.40 ± 0.13**

Soil thickness -0.19 ± 0.13 -0.15 ± 0.09 -0.13 ± 0.09
Saturated 
hydraulic 
conductivity 0.57 ± 0.20*** -0.82 ± 0.20***

Cation exchange 
capacity 0.20 ± 0.12
C-Statistics‡ 0.70 0.69 0.74 0.68 0.65 0.66
AUROC 
(95% CI)£ 0.68 (0.65, 0.72) 0.67 (0.65, 0.70) 0.72 (0.70, 0.75) 0.66 (0.64, 0.68) 0.63 (0.61, 0.64) 0.64 (0.62, 0.66)
n 1617 1725 2253 2373 2376 2379

140 a Standardized coefficients are unitless, normalized values so that the variances of dependent and independent 
141 variables are equal to 1 and can be compared because they reflect how many standard deviations PFAS 
142 concentrations will change per standard deviation in the predictor variable.
143 b WWTP = wastewater treatment plants.
144 Note: *p<0.05; **p<0.01; ***p<0.001
145 Variables not selected by the logistic regression models are pH calculated by the 1:1 soil-water ratio, and available  
146 water storage from the surface to reported depth of soil profile.
147 ¶ Industry impact is calculated as an exponential decay function of the Haversine distance between the point source 
148 and well. Only industries with elevation above a well and within the same 12-digit HUC were considered.
149 ‡Bedrock type = Metasedimentary and Metavolcanic Rocks of the Merrimack Trough
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150 † Coefficients that are not statistically significantly different from zero at p = 0.05 level are kept in the table because 
151 they were selected in the stepwise logistic regression.
152 € Potential sources: sources considered include semiconductor, printing, metal plating, textile mills, petroleum and 
153 coal products manufacturing, chemical manufacturing.
154 ‡Concordance (C) statistics are used to assess model discrimination, which means how well the model can separate 
155 the wells with detectable concentrations from those with non-detect. C statistics ranges from 0.5 to 1, and values 
156 around 0.7 generally indicate a good model.
157 £Area under the Receiver Operating Characteristics curve (AUROC) is used to evaluate the classification model’s 
158 performance. The mean AUROC and its 95% confidence interval (CI) is calculated by 10-fold cross validation.
159
160
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161 Table S6. Tuning of hyperparameters in the random forest model and area under the 

162 Receiver Operating Characteristics curve (AUROC)

163
Classification Random Forest1

Worst performance Best performance
mtry2 ns3 AUROC mtry ns AUROC

PFPeA 20 1 0.72 10 2 0.79
PFHxA 17 1 0.71 16 9 0.78
PFHpA 19 1 0.76 6 4 0.86
PFOA 20 8 0.78 10 4 0.84
PFOS 8 1 0.82 22 5 0.74
sumPFAS 20 1 0.74 17 6 0.81

164 Notes: 
165 1The number of trees used was 1000 given that the out-of-bag error converged by then across all compounds. 
166 2Number of features randomly sampled at each node out of an original 26 features. 
167 3Minimal size of terminal nodes.
168
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169
170 Figure S4. Locations of potential PFAS sources in NH. White dots represent the location of 

171 wells sampled in this study. The number of wells sampled that were influenced by each 

172 source are as follows: Airports (n = 36); Military Bases (n = 51); Other Industries (potential 

173 sources) (n = 1471); Plastics (n = 1320); Textiles (n = 573); Wastewater treatment plants 

174 (WWTP) (n = 203).

175
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176 S4. Review of previous literature on machine learning models for drinking water 

177 contaminants.

178 We reviewed 18 peer-reviewed studies that used a similar methodology published 

179 between 2012 and 2019 (SI Table S5). Most studies have focused on geogenic and inorganic 

180 groundwater pollution such as arsenic, fluoride and anthropogenic pollution such as nitrate. Our 

181 study is the first to apply this methodology to predict PFAS in private wells. Model performance 

182 varied across location, compound, sample size, and the machine learning models used. 

183 The performance of classification random forest models developed in this study is similar 

184 to previous efforts to model other toxicants in groundwater by developing machine learning 

185 models. Random forest models were used in 58% of the studies reviewed and achieved on 

186 average an accuracy rate of 79% (range: 37% - 92%), which is similar to the results shown here. 

187 For screening purpose, false negatives (missing wells with potentially high contamination) are 

188 more consequential than false positives. In this current work and most previous work, the 

189 classification threshold is set to maximize accuracy. In practice, this can be adjusted so that some 

190 true negative rate is sacrificed in order to reduce false negatives.

191 Performance of the regression random forest models in this study was comparable to 

192 those for predicting groundwater nitrate contamination from prior work.2, 6, 7 Similar to the 

193 classification random forest model, groundwater recharge and monthly precipitation were 

194 consistently among the most important predictors for all five PFAS modeled, in addition to 

195 impacts from industrial sources such as plastics manufacturing, printing and textile 

196 manufacturing.  A model for groundwater nitrate concentrations in Germany with a comparable 

197 sample size to ours (1890 wells) had an R2 of 0.54.6 In Iowa and North Carolina, continuous 

198 models similarly had low predictive performance (R2 <0.33) for predicting groundwater nitrate 
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199 concentrations in 22,000 private wells sampled.7 Common challenges for such modeling include 

200 dealing with a low fraction of samples with detectable concentrations, and limited data on some 

201 important spatial predictors, particularly those relating to local groundwater flow conditions that 

202 are not always available at statewide or larger spatial scales.8 
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203 Table S7. Previously published predictive models for toxicants in private wells

No. Author Year Location Compound Sample 
size

ML 
technique

Performance Ref

1 Anning 2012 Arizona, 
California, 
Colorado, 

Nevada, New 
Mexico, and 

Utah

Nitrate Not 
reported 

(NR)

Random 
forest

Correct 48.6%, 
Overpredicted 

25.8%, 
Underpredicted, 

25.6%

9

2 Anning 2012 Arizona, 
California, 
Colorado, 

Nevada, New 
Mexico, and 

Utah

Arsenic NR Random 
forest

Correct 36.7%, 
Overpredicted 

33.5%, 
Underpredicted 

29.8%

9

3 Nolan 2014 Central 
Valley, CA

Nitrate 
(shallow 

well)

314 Logistic 
regression

Predict 
nitrate>4mg/L; 

accuracy 69.7%, 
sensitivity 69.0%, 
specificity 70.4%

2

4 Nolan 2014 Central 
Valley, CA

Nitrate 
(shallow 

well)

318 Random 
forest 

classification

Predict 
nitrate>4mg/L; 

accuracy 71.7%, 
sensitivity 65.1%, 
specificity 77.3%

2

5 Nolan 2014 Central 
Valley, CA

Nitrate 
(shallow 

well)

318 Random 
forest 

regression

Predict 
nitrate>4mg/L; 

accuracy 68.9%, 
sensitivity 84.2%, 
specificity 55.8%

2

6 Nolan 2014 Central 
Valley, CA

Nitrate 
(deep well)

928 Logistic 
regression

Predict 
nitrate>4mg/L; 

accuracy 80.8%, 
sensitivity  

29.1%, specificity 
94.9%

2

7 Nolan 2014 Central 
Valley, CA

Nitrate 
(deep well)

937 Random 
forest 

classification

Predict 
nitrate>4mg/L; 

accuracy 81.2%, 
sensitivity 25.1%, 
specificity 96.3%

2

8 Nolan 2014 Central 
Valley, CA

Nitrate 
(deep well)

937 Random 
forest 

regression

Predict 
nitrate>4mg/L; 

accuracy 81.5%, 
sensitivity 51.3%, 
specificity 89.7%

2

9 Rodriguez-
Galiano

2014 Granada city, 
Spain

Nitrate 175 Random 
forest

Predict nitrate 
>50mg/L; 80.46%

10

10 Rodriguez-
Galiano

2014 Granada city, 
Spain

Nitrate 175 Logistic 
regression

Predict nitrate 
>50mg/L; 

accuracy is 
73.56%

10

11 Singh 2014 Indo-
Gangetic 

Chemical 
oxygen 

409 Decision tree 
boost

Test dataset, R2 = 
0.918

11
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plains of 
north India

demand 
(COD)

12 Nolan 2015 Central 
Valley, CA

Nitrate 
(shallow 

well)

318 Boosted 
regression 

trees

Hold-out data, 
R2=0.26

12

13 Nolan 2015 Central 
Valley, CA

Nitrate 
(shallow 

well)

318 Artificial 
neural 

networks

Hold-out data, 
R2=0.12

12

14 Nolan 2015 Central 
Valley, CA

Nitrate 
(shallow 

well)

318 Bayesian 
networks

Hold-out data, 
R2=0.18

12

15 Wheeler 2015 Iowa Nitrate 34,084 Random 
forest

Test dataset, R2 = 
0.38

13

16 Wheeler 2015 Iowa Nitrate 34,084 Random 
forest

Predict nitrate 
>5mg/L; 

Accuracy is 0.92, 
sensitivity is 0.75, 
specificity is 0.96

13

17 Ayotte 2016 Central 
Valley, CA

Arsenic 1,180 Boosted 
regression 

trees

Predict arsenic 
>10 μg/L; 

Accuracy is 0.91, 
sensitivity is 0.39, 
specificity is 0.96

8

18 Ayotte 2016 Central 
Valley, CA

Arsenic 1,180 Logistic 
regression

Predict arsenic 
>10 μg/L; 

Accuracy is 0.90, 
sensitivity is 0.18, 
specificity is 0.98

8

19 Ayotte 2017 Contiguous 
US

Arsenic 20,450 Logistic 
regression

Predict arsenic 
>10 μg/L; 

Accuracy is 0.90, 
sensitivity is 0.14, 
specificity is 0.99

14

20 Ransom 2017 Central 
Valley, CA

Nitrate 5,170 Boosted 
regression 

trees

Hold-out data, 
R2=0.434

15

21 Rosecrans 2017 Central 
Valley, CA

Dissolved 
oxygen

2,767 Boosted 
regression 

trees

Hold-out data, 
predict DO<0.5 

mg/L, AUC is 
0.87

16

22 Rosecrans 2017 Central 
Valley, CA

Manganese 2,767 Boosted 
regression 

trees

Hold-out data, 
predict Mn>50 

μg/L, AUC is 
0.87

16

23 Tesoriero 2017 Northeastern 
Wisconsin

Nitrate 10,866 Random 
forest 

classification

Predict nitrate 
>5mg/L, test data, 

accuracy 75%, 
AJC 0.80

17

24 Tesoriero 2017 Northeastern 
Wisconsin

Iron 539 Random 
forest 

classification

Predict iron >0.1 
mg/L, on out of 

bag training data, 
accuracy is 74%, 

AUC is 0.79

17

25 Tesoriero 2017 Northeastern 
Wisconsin

Arsenic 1,275 Random 
forest 

classification

Predict arsenic >5 
μg/L, on out of 

bag training data, 

17
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accuracy is 74%, 
AUC is 0.79

26 Erickson 2018 North-central 
USA

Arsenic 3,283 Boosted 
regression 

trees

Predict arsenic 
>10 μg/L. On 

hold-out dataset, 
accuracy is 67%, 

ROC is 0.72

18

27 Podgorski 2018 India Fluoride 12,600 Random 
forest

Predict fluoride 
>1.5mg/L, 

accuracy is 0.78, 
AUC is 0.84

19

28 Rodriguez-
Galiano

2018 Granada city, 
Spain

Nitrate 110 Random 
forest

Predict nitrate 
>50mg/L; AUC is 

0.92

20

29 Trajanov 2018 France Pesticides NR Random 
forest

Recalls of 0.84 
and 0.86 for the 

risky and not-
risky class 

respectively

21

30 Canion 2019 Florida Nitrate 1554 Random 
forest 

classification

Predict nitrate 
>0.35 mg/L; AUC 

is 0.89, accuracy 
is 0.83, sensitivity 
is 0.79, specificity 

is 0.86

22

31 Canion 2019 Florida Nitrate 1554 Random 
forest 

classification

Predict nitrate 
>1.2 mg/L; AUC 
is 0.84, accuracy 

is 0.79, sensitivity 
is 0.54, specificity 

is 0.89

22

32 Knoll 2019 Germany Nitrate 1890 Random 
forest 

regression

Predict nitrate 
concentration, 

R2=0.54

6

33 Messier 2019 North 
Carolina

Nitrate 22000 Multiple 
random 

forest 
classification

Predict nitrate < 1 
mg/L, 1 – 5 mg/L, 

and ≥5 mg/L, 
overall accuracy 

is 0.79

7

204
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